Algebraic Methods in Quantum Chemistry and Physics

Algebraic Methods in Quantum Chemistry and Physics
Author: Francisco M. Fernandez
Publisher: CRC Press
Total Pages: 284
Release: 1995-10-24
Genre: Science
ISBN: 9780849382925

Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Algebraic Methods in Quantum Chemistry and Physics

Algebraic Methods in Quantum Chemistry and Physics
Author: Francisco M. Fernandez
Publisher: CRC Press
Total Pages: 284
Release: 2020-01-16
Genre: Mathematics
ISBN: 100072266X

Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Geometric and Algebraic Topological Methods in Quantum Mechanics

Geometric and Algebraic Topological Methods in Quantum Mechanics
Author: G. Giachetta
Publisher: World Scientific
Total Pages: 715
Release: 2005
Genre: Science
ISBN: 9812701265

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry''s geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.

Algebraic Approach to Simple Quantum Systems

Algebraic Approach to Simple Quantum Systems
Author: Barry G. Adams
Publisher: Springer Science & Business Media
Total Pages: 457
Release: 2012-12-06
Genre: Science
ISBN: 3642579337

This book provides an introduction to the use of algebraic methods and sym bolic computation for simple quantum systems with applications to large order perturbation theory. It is the first book to integrate Lie algebras, algebraic perturbation theory and symbolic computation in a form suitable for students and researchers in theoretical and computational chemistry and is conveniently divided into two parts. The first part, Chapters 1 to 6, provides a pedagogical introduction to the important Lie algebras so(3), so(2,1), so(4) and so(4,2) needed for the study of simple quantum systems such as the D-dimensional hydrogen atom and harmonic oscillator. This material is suitable for advanced undergraduate and beginning graduate students. Of particular importance is the use of so(2,1) in Chapter 4 as a spectrum generating algebra for several important systems such as the non-relativistic hydrogen atom and the relativistic Klein-Gordon and Dirac equations. This approach provides an interesting and important alternative to the usual textbook approach using series solutions of differential equations.

Algebraic Theory of Molecules

Algebraic Theory of Molecules
Author: F. Iachello
Publisher: Oxford University Press, USA
Total Pages: 262
Release: 1995
Genre: Mathematics
ISBN: 0195080912

Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.

Factorization Method in Quantum Mechanics

Factorization Method in Quantum Mechanics
Author: Shi-Hai Dong
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2007-04-01
Genre: Science
ISBN: 1402057962

This book introduces the factorization method in quantum mechanics at an advanced level, with the aim of putting mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the reader’s disposal. For this purpose, the text provides a comprehensive description of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in quantum mechanics textbooks.

Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
Total Pages: 322
Release: 2009
Genre: Mathematics
ISBN: 0821846604

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Algebraic and Diagrammatic Methods in Many-Fermion Theory

Algebraic and Diagrammatic Methods in Many-Fermion Theory
Author: Frank E. Harris
Publisher: Courier Dover Publications
Total Pages: 418
Release: 2020-01-15
Genre: Psychology
ISBN: 0486837211

This text on the use of electron correlation effects in the description of the electronic structure of atoms, molecules, and crystals is intended for graduate students in physical chemistry and physics. Modern theories of electronic structure and methods of incorporating electron correlation contributions are developed using a diagrammatic and algebraic formulation, and the methods developed in the text are illustrated with examples from molecular and solid state quantum mechanics. A brief Introduction is followed by chapters on operator algebra, the independent-particle model, occupation-number formalism, and diagrams. Additional topics include the configuration-interaction method, the many-body perturbation theory, and the coupled-cluster method.

Quantum Chemistry and Dynamics of Excited States

Quantum Chemistry and Dynamics of Excited States
Author: Leticia González
Publisher: John Wiley & Sons
Total Pages: 52
Release: 2021-02-01
Genre: Science
ISBN: 1119417759

An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.

Mathematics for Quantum Chemistry

Mathematics for Quantum Chemistry
Author: Jay Martin Anderson
Publisher: Courier Corporation
Total Pages: 177
Release: 2012-12-13
Genre: Science
ISBN: 0486151484

Introduction to problems of molecular structure and motion covers calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics. Answers to problems. 1966 edition.