Algebraic Homogeneous Spaces And Invariant Theory
Download Algebraic Homogeneous Spaces And Invariant Theory full books in PDF, epub, and Kindle. Read online free Algebraic Homogeneous Spaces And Invariant Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Frank D. Grosshans |
Publisher | : Springer |
Total Pages | : 158 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540696172 |
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.
Author | : Igor Dolgachev |
Publisher | : Cambridge University Press |
Total Pages | : 244 |
Release | : 2003-08-07 |
Genre | : Mathematics |
ISBN | : 9780521525480 |
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
Author | : D.A. Timashev |
Publisher | : Springer |
Total Pages | : 254 |
Release | : 2011-04-07 |
Genre | : Mathematics |
ISBN | : 9783642183980 |
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Author | : Walter Ricardo Ferrer Santos |
Publisher | : CRC Press |
Total Pages | : 479 |
Release | : 2017-09-19 |
Genre | : Mathematics |
ISBN | : 1482239167 |
Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.
Author | : Evgueni A. Tevelev |
Publisher | : Springer Science & Business Media |
Total Pages | : 257 |
Release | : 2006-03-30 |
Genre | : Mathematics |
ISBN | : 3540269576 |
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
Author | : Roe Goodman |
Publisher | : Cambridge University Press |
Total Pages | : 708 |
Release | : 2000-01-13 |
Genre | : Mathematics |
ISBN | : 9780521663489 |
More than half a century has passed since Weyl's 'The Classical Groups' gave a unified picture of invariant theory. This book presents an updated version of this theory together with many of the important recent developments. As a text for those new to the area, this book provides an introduction to the structure and finite-dimensional representation theory of the complex classical groups that requires only an abstract algebra course as a prerequisite. The more advanced reader will find an introduction to the structure and representations of complex reductive algebraic groups and their compact real forms. This book will also serve as a reference for the main results on tensor and polynomial invariants and the finite-dimensional representation theory of the classical groups. It will appeal to researchers in mathematics, statistics, physics and chemistry whose work involves symmetry groups, representation theory, invariant theory and algebraic group theory.
Author | : Ėrnest Borisovich Vinberg |
Publisher | : American Mathematical Soc. |
Total Pages | : 284 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9780821837337 |
This volume, devoted to the 70th birthday of A. L. Onishchik, contains a collection of articles by participants in the Moscow Seminar on Lie Groups and Invariant Theory headed by E. B. Vinberg and A. L. Onishchik. The book is suitable for graduate students and researchers interested in Lie groups and related topics.
Author | : Winfried Bruns |
Publisher | : Springer |
Total Pages | : 246 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540392742 |
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
Author | : Bernd Sturmfels |
Publisher | : Springer Science & Business Media |
Total Pages | : 202 |
Release | : 2008-06-17 |
Genre | : Mathematics |
ISBN | : 3211774173 |
This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.
Author | : Harold Edward Alexander Eddy Campbell |
Publisher | : American Mathematical Soc. |
Total Pages | : 308 |
Release | : |
Genre | : Science |
ISBN | : 9780821870303 |
This volume includes the proceedings of a workshop on Invariant Theory held at Queen's University (Ontario). The workshop was part of the theme year held under the auspices of the Centre de recherches mathematiques (CRM) in Montreal. The gathering brought together two communities of researchers: those working in characteristic 0 and those working in positive characteristic. The book contains three types of papers: survey articles providing introductions to computational invarianttheory, modular invariant theory of finite groups, and the invariant theory of Lie groups; expository works recounting recent research in these three areas and beyond; and open problems of current interest. The book is suitable for graduate students and researchers working in invarianttheory.