Algebraic Geometry I
Download Algebraic Geometry I full books in PDF, epub, and Kindle. Read online free Algebraic Geometry I ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ulrich Görtz |
Publisher | : Springer Nature |
Total Pages | : 626 |
Release | : 2020-07-27 |
Genre | : Mathematics |
ISBN | : 3658307331 |
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Author | : Steven Dale Cutkosky |
Publisher | : American Mathematical Soc. |
Total Pages | : 498 |
Release | : 2018-06-01 |
Genre | : Mathematics |
ISBN | : 1470435187 |
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Author | : Ulrich Görtz |
Publisher | : Springer Science & Business Media |
Total Pages | : 622 |
Release | : 2010-08-06 |
Genre | : Mathematics |
ISBN | : 3834897221 |
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Author | : Robin Hartshorne |
Publisher | : Springer Science & Business Media |
Total Pages | : 511 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475738498 |
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Author | : Solomon Lefschetz |
Publisher | : Courier Corporation |
Total Pages | : 250 |
Release | : 2012-09-05 |
Genre | : Mathematics |
ISBN | : 0486154726 |
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Author | : V.I. Danilov |
Publisher | : Springer Science & Business Media |
Total Pages | : 328 |
Release | : 1998-03-17 |
Genre | : Mathematics |
ISBN | : 9783540637059 |
"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." --Acta Scientiarum Mathematicarum
Author | : Joe Harris |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1475721897 |
"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS
Author | : R.K. Lazarsfeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 414 |
Release | : 2004-08-24 |
Genre | : History |
ISBN | : 9783540225331 |
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
Author | : David A. Cox |
Publisher | : Springer Science & Business Media |
Total Pages | : 513 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475769113 |
An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Author | : Klaus Hulek |
Publisher | : American Mathematical Soc. |
Total Pages | : 225 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821829521 |
This book is a true introduction to the basic concepts and techniques of algebraic geometry. The language is purposefully kept on an elementary level, avoiding sheaf theory and cohomology theory. The introduction of new algebraic concepts is always motivated by a discussion of the corresponding geometric ideas. The main point of the book is to illustrate the interplay between abstract theory and specific examples. The book contains numerous problems that illustrate the general theory. The text is suitable for advanced undergraduates and beginning graduate students. It contains sufficient material for a one-semester course. The reader should be familiar with the basic concepts of modern algebra. A course in one complex variable would be helpful, but is not necessary.