Algebraic Geometry And Theta Functions
Download Algebraic Geometry And Theta Functions full books in PDF, epub, and Kindle. Read online free Algebraic Geometry And Theta Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Arthur B. Coble |
Publisher | : American Mathematical Soc. |
Total Pages | : 292 |
Release | : 1929-12-31 |
Genre | : Mathematics |
ISBN | : 0821846027 |
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and genus three (Chapter IV). The case of genus four is discussed in the last chapter. The exposition is concise with a rich variety of details and references.
Author | : Alexander Polishchuk |
Publisher | : Cambridge University Press |
Total Pages | : 308 |
Release | : 2003-04-21 |
Genre | : Mathematics |
ISBN | : 0521808049 |
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Author | : Serge Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 178 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461257409 |
Introduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.
Author | : Shrawan Kumar |
Publisher | : Cambridge University Press |
Total Pages | : 539 |
Release | : 2021-11-25 |
Genre | : Mathematics |
ISBN | : 1316518167 |
This book gives a complete proof of the Verlinde formula and of its connection to generalized theta functions.
Author | : David Mumford |
Publisher | : Springer Science & Business Media |
Total Pages | : 248 |
Release | : 2007-06-25 |
Genre | : Mathematics |
ISBN | : 0817645772 |
This volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).
Author | : Igor V. Dolgachev |
Publisher | : Cambridge University Press |
Total Pages | : 653 |
Release | : 2012-08-16 |
Genre | : Mathematics |
ISBN | : 1139560786 |
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Author | : Arthur B. Coble |
Publisher | : |
Total Pages | : 0 |
Release | : 1947 |
Genre | : Functions, Theta |
ISBN | : |
Author | : David Mumford |
Publisher | : Springer Science & Business Media |
Total Pages | : 210 |
Release | : 2010-10-22 |
Genre | : Mathematics |
ISBN | : 0817645799 |
This volume is the third of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).
Author | : Hershel M. Farkas |
Publisher | : American Mathematical Soc. |
Total Pages | : 557 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 0821813927 |
There are incredibly rich connections between classical analysis and number theory. For instance, analytic number theory contains many examples of asymptotic expressions derived from estimates for analytic functions, such as in the proof of the Prime Number Theorem. In combinatorial number theory, exact formulas for number-theoretic quantities are derived from relations between analytic functions. Elliptic functions, especially theta functions, are an important class of such functions in this context, which had been made clear already in Jacobi's Fundamenta nova. Theta functions are also classically connected with Riemann surfaces and with the modular group $\Gamma = \mathrm{PSL (2,\mathbb{Z )$, which provide another path for insights into number theory. Farkas and Kra, well-known masters of the theory of Riemann surfaces and the analysis of theta functions, uncover here interesting combinatorial identities by means of the function theory on Riemann surfaces related to the principal congruence subgroups $\Gamma(k)$. For instance, the authors use this approach to derive congruences discovered by Ramanujan for the partition function, with the main ingredient being the construction of the same function in more than one way. The authors also obtain a variant on Jacobi's famous result on the number of ways that an integer can be represented as a sum of four squares, replacing the squares by triangular numbers and, in the process, obtaining a cleaner result. The recent trend of applying the ideas and methods of algebraic geometry to the study of theta functions and number theory has resulted in great advances in the area. However, the authors choose to stay with the classical point of view. As a result, their statements and proofs are very concrete. In this book the mathematician familiar with the algebraic geometry approach to theta functions and number theory will find many interesting ideas as well as detailed explanations and derivations of new and old results. Highlights of the book include systematic studies of theta constant identities, uniformizations of surfaces represented by subgroups of the modular group, partition identities, and Fourier coefficients of automorphic functions. Prerequisites are a solid understanding of complex analysis, some familiarity with Riemann surfaces, Fuchsian groups, and elliptic functions, and an interest in number theory. The book contains summaries of some of the required material, particularly for theta functions and theta constants. Readers will find here a careful exposition of a classical point of view of analysis and number theory. Presented are numerous examples plus suggestions for research-level problems. The text is suitable for a graduate course or for independent reading.
Author | : R?zvan Gelca |
Publisher | : World Scientific |
Total Pages | : 469 |
Release | : 2014 |
Genre | : Mathematics |
ISBN | : 9814520586 |
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil''s representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those interested in ChernOCoSimons theory find here an introduction using the simplest case, that of abelian ChernOCoSimons theory. Moreover, the construction of abelian ChernOCoSimons theory is based entirely on quantum mechanics, and not on quantum field theory as it is usually done. Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is a self-contained, unified presentation. It is suitable for an advanced graduate course, as well as for self-study. Contents: Some Historical Facts; A Quantum Mechanical Prototype; Surfaces and Curves; The Theta Functions Associated to a Riemann Surface; From Theta Functions to Knots; Some Results About 3- and 4-Dimensional Manifolds; The Discrete Fourier Transform and Topological Quantum Field Theory; Theta Functions and Quantum Groups; An Epilogue OCo Abelian ChernOCoSimons Theory. Readership: Graduate students and young researchers with an interest in complex analysis, mathematical physics, algebra geometry and low dimensional topology.