Advances In Machine Learning Research And Application 2013 Edition
Download Advances In Machine Learning Research And Application 2013 Edition full books in PDF, epub, and Kindle. Read online free Advances In Machine Learning Research And Application 2013 Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : |
Publisher | : ScholarlyEditions |
Total Pages | : 1046 |
Release | : 2013-06-21 |
Genre | : Computers |
ISBN | : 1481683195 |
Advances in Machine Learning Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Artificial Intelligence. The editors have built Advances in Machine Learning Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Author | : Aboul Ella Hassanien |
Publisher | : Springer |
Total Pages | : 606 |
Release | : 2012-12-03 |
Genre | : Computers |
ISBN | : 3642353266 |
This book constitutes the refereed proceedings of the First International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2012, held in Cairo, Egypt, in December 2012. The 58 full papers presented were carefully reviewed and selected from 99 intial submissions. The papers are organized in topical sections on rough sets and applications, machine learning in pattern recognition and image processing, machine learning in multimedia computing, bioinformatics and cheminformatics, data classification and clustering, cloud computing and recommender systems.
Author | : |
Publisher | : ScholarlyEditions |
Total Pages | : 655 |
Release | : 2013-05-01 |
Genre | : Technology & Engineering |
ISBN | : 1490104410 |
Robotics—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Autonomous Robotics. The editors have built Robotics—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Autonomous Robotics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Robotics—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Author | : |
Publisher | : ScholarlyEditions |
Total Pages | : 906 |
Release | : 2013-06-21 |
Genre | : Mathematics |
ISBN | : 1481689681 |
Mathematics—Advances in Research and Application: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about ZZZAdditional Research in a concise format. The editors have built Mathematics—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about ZZZAdditional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Mathematics—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Author | : Mahrishi, Mehul |
Publisher | : IGI Global |
Total Pages | : 344 |
Release | : 2020-04-24 |
Genre | : Computers |
ISBN | : 1799830977 |
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Author | : Kevin P. Murphy |
Publisher | : MIT Press |
Total Pages | : 858 |
Release | : 2022-03-01 |
Genre | : Computers |
ISBN | : 0262369303 |
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Author | : Aboul Ella Hassanien |
Publisher | : Springer |
Total Pages | : 542 |
Release | : 2014-11-04 |
Genre | : Computers |
ISBN | : 3319134612 |
This book constitutes the refereed proceedings of the Second International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2014, held in Cairo, Egypt, in November 2014. The 49 full papers presented were carefully reviewed and selected from 101 initial submissions. The papers are organized in topical sections on machine learning in Arabic text recognition and assistive technology; recommendation systems for cloud services; machine learning in watermarking/authentication and virtual machines; features extraction and classification; rough/fuzzy sets and applications; fuzzy multi-criteria decision making; Web-based application and case-based reasoning construction; social networks and big data sets.
Author | : Com?a, Ioan-Sorin |
Publisher | : IGI Global |
Total Pages | : 379 |
Release | : 2019-01-25 |
Genre | : Technology & Engineering |
ISBN | : 152257459X |
The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.
Author | : Li Deng |
Publisher | : |
Total Pages | : 212 |
Release | : 2014 |
Genre | : Machine learning |
ISBN | : 9781601988140 |
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Author | : Management Association, Information Resources |
Publisher | : IGI Global |
Total Pages | : 1516 |
Release | : 2022-05-13 |
Genre | : Computers |
ISBN | : 1668462923 |
Machine learning continues to have myriad applications across industries and fields. To ensure this technology is utilized appropriately and to its full potential, organizations must better understand exactly how and where it can be adapted. Further study on the applications of machine learning is required to discover its best practices, challenges, and strategies. The Research Anthology on Machine Learning Techniques, Methods, and Applications provides a thorough consideration of the innovative and emerging research within the area of machine learning. The book discusses how the technology has been used in the past as well as potential ways it can be used in the future to ensure industries continue to develop and grow. Covering a range of topics such as artificial intelligence, deep learning, cybersecurity, and robotics, this major reference work is ideal for computer scientists, managers, researchers, scholars, practitioners, academicians, instructors, and students.