Advances in Linear Algebra Research

Advances in Linear Algebra Research
Author: Ivan Kyrchei
Publisher: Nova Science Publishers
Total Pages: 0
Release: 2015
Genre: Algebras, Linear
ISBN: 9781634635653

This book presents original studies on the leading edge of linear algebra. Each chapter has been carefully selected in an attempt to present substantial research results across a broad spectrum. The main goal of Chapter One is to define and investigate the restricted generalized inverses corresponding to minimization of constrained quadratic form. As stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A review of the most interesting properties of the Projective Equivalence and the Extended Hermite Equivalence classes is presented in the chapter. New determinantal representations of generalized inverse matrices based on their limit representations are introduced in Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer's rules for the least squares solution with the minimum norm and for the Drazin inverse solution of singular linear systems have been obtained in the chapter. In Chapter Four, a very interesting application of linear algebra of commutative rings to systems theory, is explored. Chapter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of triangular matrices (tables) is introduced. The main "characters" of the chapter are special triangular tables (which will be called triangular matrices) and their functions paradeterminants and parapermanents. The aim of Chapter Seven is to present the latest developments in iterative methods for solving linear matrix equations. The problems of existence of common eigenvectors and simultaneous triangularization of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two approaches to define a noncommutative determinant (a determinant of a matrix with noncommutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example of how the methods of linear algebra are used in natural sciences, particularly in chemistry. In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix, all columns add to zero, all the diagonal elements are non-positive and all the other matrix entries are non-negative. As a result of this particular structure, the Gershgorin Circles Theorem can be applied to show that all the eigenvalues are negative or zero.

Introduction to Linear and Matrix Algebra

Introduction to Linear and Matrix Algebra
Author: Nathaniel Johnston
Publisher: Springer Nature
Total Pages: 482
Release: 2021-05-19
Genre: Mathematics
ISBN: 3030528111

This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.

Advanced Linear Algebra

Advanced Linear Algebra
Author: Steven Roman
Publisher: Springer Science & Business Media
Total Pages: 488
Release: 2007-12-31
Genre: Mathematics
ISBN: 038727474X

Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra

Hot Topics in Linear Algebra

Hot Topics in Linear Algebra
Author: Ivan Kyrchei
Publisher:
Total Pages: 307
Release: 2020
Genre: Mathematics
ISBN: 9781536177718

"Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces. Systems of linear equations with several unknowns are naturally represented using the formalism of matrices and vectors. So we arrive at the matrix algebra, etc. Linear algebra is central to almost all areas of mathematics. Many ideas and methods of linear algebra were generalized to abstract algebra. Functional analysis studies the infinite-dimensional version of the theory of vector spaces. Combined with calculus, linear algebra facilitates the solution of linear systems of differential equations. Linear algebra is also used in most sciences and engineering areas because it allows for the modeling of many natural phenomena, and efficiently computes with such models. "Hot Topics in Linear Algebra" presents original studies in some areas of the leading edge of linear algebra. Each article has been carefully selected in an attempt to present substantial research results across a broad spectrum. Topics discussed herein include recent advances in analysis of various dynamical systems based on the Gradient Neural Network; Cramer's rules for quaternion generalized Sylvester-type matrix equations by using noncommutative row-column determinants; matrix algorithms for finding the generalized bisymmetric solution pair of general coupled Sylvester-type matrix equations; explicit solution formulas of some systems of mixed generalized Sylvester-type quaternion matrix equations; new approaches to studying the properties of Hessenberg matrices by using triangular tables and their functions; researching of polynomial matrices over a field with respect to semi-scalar equivalence; mathematical modeling problems in chemistry with applying mixing problems, which the associated MP-matrices; and some visual apps, designed in Scilab, for the learning of different topics of linear algebra"--

Linear Algebra

Linear Algebra
Author: Kuldeep Singh
Publisher: Oxford University Press
Total Pages: 617
Release: 2013-10
Genre: Mathematics
ISBN: 0199654441

"This book is intended for first- and second-year undergraduates arriving with average mathematics grades ... The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to all of the set problems freely available online http://www.oup.co.uk/companion/singh" -- From preface.

A Guide to Advanced Linear Algebra

A Guide to Advanced Linear Algebra
Author: Steven H. Weintraub
Publisher: MAA
Total Pages: 267
Release: 2011-07-07
Genre: Mathematics
ISBN: 0883853515

A thorough development of a topic at the core of mathematics, ideal for graduate students and professional mathematicians.

Advanced Topics in Linear Algebra

Advanced Topics in Linear Algebra
Author: Kevin O'Meara
Publisher: OUP USA
Total Pages: 423
Release: 2011-09-16
Genre: Mathematics
ISBN: 0199793735

This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.

Linear Algebra Done Right

Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 1997-07-18
Genre: Mathematics
ISBN: 9780387982595

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Advances in Matrix Inequalities

Advances in Matrix Inequalities
Author: Mohammad Bagher Ghaemi
Publisher: Springer Nature
Total Pages: 287
Release: 2021-07-11
Genre: Mathematics
ISBN: 3030760472

This self-contained monograph unifies theorems, applications and problem solving techniques of matrix inequalities. In addition to the frequent use of methods from Functional Analysis, Operator Theory, Global Analysis, Linear Algebra, Approximations Theory, Difference and Functional Equations and more, the reader will also appreciate techniques of classical analysis and algebraic arguments, as well as combinatorial methods. Subjects such as operator Young inequalities, operator inequalities for positive linear maps, operator inequalities involving operator monotone functions, norm inequalities, inequalities for sector matrices are investigated thoroughly throughout this book which provides an account of a broad collection of classic and recent developments. Detailed proofs for all the main theorems and relevant technical lemmas are presented, therefore interested graduate and advanced undergraduate students will find the book particularly accessible. In addition to several areas of theoretical mathematics, Matrix Analysis is applicable to a broad spectrum of disciplines including operations research, mathematical physics, statistics, economics, and engineering disciplines. It is hoped that graduate students as well as researchers in mathematics, engineering, physics, economics and other interdisciplinary areas will find the combination of current and classical results and operator inequalities presented within this monograph particularly useful.

Advanced Linear Algebra

Advanced Linear Algebra
Author: Hugo Woerdeman
Publisher: CRC Press
Total Pages: 348
Release: 2015-12-23
Genre: Mathematics
ISBN: 149875404X

Advanced Linear Algebra features a student-friendly approach to the theory of linear algebra. The author’s emphasis on vector spaces over general fields, with corresponding current applications, sets the book apart. He focuses on finite fields and complex numbers, and discusses matrix algebra over these fields. The text then proceeds to cover vector spaces in depth. Also discussed are standard topics in linear algebra including linear transformations, Jordan canonical form, inner product spaces, spectral theory, and, as supplementary topics, dual spaces, quotient spaces, and tensor products. Written in clear and concise language, the text sticks to the development of linear algebra without excessively addressing applications. A unique chapter on "How to Use Linear Algebra" is offered after the theory is presented. In addition, students are given pointers on how to start a research project. The proofs are clear and complete and the exercises are well designed. In addition, full solutions are included for almost all exercises.