Advances in Computer Methods for Partial Differential Equations-IV
Author | : Robert Vichnevetsky |
Publisher | : |
Total Pages | : 440 |
Release | : 1981 |
Genre | : Differential equations, Partial |
ISBN | : |
Download Advances In Computer Methods For Partial Differential Equations Iv full books in PDF, epub, and Kindle. Read online free Advances In Computer Methods For Partial Differential Equations Iv ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert Vichnevetsky |
Publisher | : |
Total Pages | : 440 |
Release | : 1981 |
Genre | : Differential equations, Partial |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 588 |
Release | : 1987 |
Genre | : Differential equations, Partial |
ISBN | : |
Author | : Walter A. Strauss |
Publisher | : John Wiley & Sons |
Total Pages | : 467 |
Release | : 2007-12-21 |
Genre | : Mathematics |
ISBN | : 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Author | : Robert Vichnevetsky |
Publisher | : |
Total Pages | : 588 |
Release | : 1987 |
Genre | : Differential equations, Partial |
ISBN | : |
Author | : Hans Petter Langtangen |
Publisher | : Springer Science & Business Media |
Total Pages | : 704 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662011700 |
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Author | : Randall J. LeVeque |
Publisher | : SIAM |
Total Pages | : 356 |
Release | : 2007-01-01 |
Genre | : Mathematics |
ISBN | : 9780898717839 |
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author | : Ivo Babushka |
Publisher | : SIAM |
Total Pages | : 272 |
Release | : 1983-01-01 |
Genre | : Mathematics |
ISBN | : 9780898711912 |
List of participants; Elliptic equations; Parabolic equations; Hyperbolic equations.
Author | : Robert Vichnevetsky |
Publisher | : |
Total Pages | : 580 |
Release | : 1984 |
Genre | : Differential equations, Partial |
ISBN | : |
Author | : Ed Bueler |
Publisher | : SIAM |
Total Pages | : 407 |
Release | : 2020-10-22 |
Genre | : Mathematics |
ISBN | : 1611976316 |
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Author | : Michael Griebel |
Publisher | : Springer Science & Business Media |
Total Pages | : 404 |
Release | : 2008-10-16 |
Genre | : Mathematics |
ISBN | : 354079994X |
The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a active research field both in the mathematics and engineering community. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn.