Advanced Real Analysis
Download Advanced Real Analysis full books in PDF, epub, and Kindle. Read online free Advanced Real Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anthony W. Knapp |
Publisher | : Springer Science & Business Media |
Total Pages | : 484 |
Release | : 2008-07-11 |
Genre | : Mathematics |
ISBN | : 0817644423 |
* Presents a comprehensive treatment with a global view of the subject * Rich in examples, problems with hints, and solutions, the book makes a welcome addition to the library of every mathematician
Author | : G. B. Folland |
Publisher | : American Mathematical Soc. |
Total Pages | : 107 |
Release | : 2014-05-14 |
Genre | : Education |
ISBN | : 0883859157 |
A concise guide to the core material in a graduate level real analysis course.
Author | : Anthony W. Knapp |
Publisher | : Springer Science & Business Media |
Total Pages | : 671 |
Release | : 2007-10-04 |
Genre | : Mathematics |
ISBN | : 0817644415 |
Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.
Author | : Teodora-Liliana Radulescu |
Publisher | : Springer Science & Business Media |
Total Pages | : 462 |
Release | : 2009-06-12 |
Genre | : Mathematics |
ISBN | : 0387773797 |
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
Author | : S. Kumaresan |
Publisher | : Alpha Science Int'l Ltd. |
Total Pages | : 172 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9781842652503 |
"Topology of Metric Spaces gives a very streamlined development of a course in metric space topology emphasizing only the most useful concepts, concrete spaces and geometric ideas to encourage geometric thinking, to treat this as a preparatory ground for a general topology course, to use this course as a surrogate for real analysis and to help the students gain some perspective of modern analysis." "Eminently suitable for self-study, this book may also be used as a supplementary text for courses in general (or point-set) topology so that students will acquire a lot of concrete examples of spaces and maps."--BOOK JACKET.
Author | : Rick Durrett |
Publisher | : Cambridge University Press |
Total Pages | : |
Release | : 2010-08-30 |
Genre | : Mathematics |
ISBN | : 113949113X |
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Author | : R. Kannan |
Publisher | : Springer Science & Business Media |
Total Pages | : 270 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461384745 |
Author | : N. L. Carothers |
Publisher | : Cambridge University Press |
Total Pages | : 420 |
Release | : 2000-08-15 |
Genre | : Mathematics |
ISBN | : 9780521497565 |
A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.
Author | : William F. Trench |
Publisher | : Prentice Hall |
Total Pages | : 0 |
Release | : 2003 |
Genre | : Applied mathematics |
ISBN | : 9780130457868 |
Using an extremely clear and informal approach, this book introduces readers to a rigorous understanding of mathematical analysis and presents challenging math concepts as clearly as possible. The real number system. Differential calculus of functions of one variable. Riemann integral functions of one variable. Integral calculus of real-valued functions. Metric Spaces. For those who want to gain an understanding of mathematical analysis and challenging mathematical concepts.
Author | : Gerald B. Folland |
Publisher | : John Wiley & Sons |
Total Pages | : 368 |
Release | : 2013-06-11 |
Genre | : Mathematics |
ISBN | : 1118626397 |
An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.