Advanced Problems In Constructive Approximation
Download Advanced Problems In Constructive Approximation full books in PDF, epub, and Kindle. Read online free Advanced Problems In Constructive Approximation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Martin D. Buhmann |
Publisher | : Birkhäuser |
Total Pages | : 286 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034876009 |
The current form of modern approximation theory is shaped by many new de velopments which are the subject of this series of conferences. The International Meetings on Approximation Theory attempt to keep track in particular of fun damental advances in the theory of function approximation, for example by (or thogonal) polynomials, (weighted) interpolation, multivariate quasi-interpolation, splines, radial basis functions and several others. This includes both approxima tion order and error estimates, as well as constructions of function systems for approximation of functions on Euclidean spaces and spheres. It is a piece of very good fortune that at all of the IDoMAT meetings, col leagues and friends from all over Europe, and indeed some count ries outside Europe and as far away as China, New Zealand, South Africa and U.S.A. came and dis cussed mathematics at IDoMAT conference facility in Witten-Bommerholz. The conference was, as always, held in a friendly and congenial atmosphere. After each meeting, the delegat es were invited to contribute to the proceed ing's volume, the previous one being published in the same Birkhäuser series as this one. The editors were pleased about the quality of the contributions which could be solicited for the book. They are refereed and we should mention our gratitude to the referees and their work.
Author | : George G. Lorentz |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2011-12-21 |
Genre | : Mathematics |
ISBN | : 9783642646102 |
In the last 30 years, Approximation Theory has undergone wonderful develop ment, with many new theories appearing in this short interval. This book has its origin in the wish to adequately describe this development, in particular, to rewrite the short 1966 book of G. G. Lorentz, "Approximation of Functions." Soon after 1980, R. A. DeVore and Lorentz joined forces for this purpose. The outcome has been their "Constructive Approximation" (1993), volume 303 of this series. References to this book are given as, for example rCA, p.201]. Later, M. v. Golitschek and Y. Makovoz joined Lorentz to produce the present book, as a continuation of the first. Completeness has not been our goal. In some of the theories, our exposition offers a selection of important, representative theorems, some other cases are treated more systematically. As in the first book, we treat only approximation of functions of one real variable. Thus, functions of several variables, complex approximation or interpolation are not treated, although complex variable methods appear often.
Author | : Ronald A. DeVore |
Publisher | : Springer Science & Business Media |
Total Pages | : 468 |
Release | : 1993-11-04 |
Genre | : Mathematics |
ISBN | : 9783540506270 |
Coupled with its sequel, this book gives a connected, unified exposition of Approximation Theory for functions of one real variable. It describes spaces of functions such as Sobolev, Lipschitz, Besov rearrangement-invariant function spaces and interpolation of operators. Other topics include Weierstrauss and best approximation theorems, properties of polynomials and splines. It contains history and proofs with an emphasis on principal results.
Author | : George G. Lorentz |
Publisher | : Springer |
Total Pages | : 674 |
Release | : 1996-05-14 |
Genre | : Mathematics |
ISBN | : |
In the last 30 years, Approximation Theory has undergone wonderful develop ment, with many new theories appearing in this short interval. This book has its origin in the wish to adequately describe this development, in particular, to rewrite the short 1966 book of G. G. Lorentz, "Approximation of Functions." Soon after 1980, R. A. DeVore and Lorentz joined forces for this purpose. The outcome has been their "Constructive Approximation" (1993), volume 303 of this series. References to this book are given as, for example rCA, p.201]. Later, M. v. Golitschek and Y. Makovoz joined Lorentz to produce the present book, as a continuation of the first. Completeness has not been our goal. In some of the theories, our exposition offers a selection of important, representative theorems, some other cases are treated more systematically. As in the first book, we treat only approximation of functions of one real variable. Thus, functions of several variables, complex approximation or interpolation are not treated, although complex variable methods appear often.
Author | : Pierluigi Colli |
Publisher | : Birkhäuser |
Total Pages | : 342 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034878931 |
Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary". A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.
Author | : Elliott Ward Cheney |
Publisher | : American Mathematical Soc. |
Total Pages | : 379 |
Release | : 2009-01-13 |
Genre | : Mathematics |
ISBN | : 0821847988 |
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.
Author | : Ivo Nowak |
Publisher | : Springer Science & Business Media |
Total Pages | : 242 |
Release | : 2005-08-15 |
Genre | : Computers |
ISBN | : 9783764372385 |
Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.
Author | : Michael I. Ganzburg |
Publisher | : American Mathematical Soc. |
Total Pages | : 178 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0821840630 |
The author develops the limit relations between the errors of polynomial approximation in weighted metrics and apply them to various problems in approximation theory such as asymptotically best constants, convergence of polynomials, approximation of individual functions, and multidimensional limit theorems of polynomial approximation.
Author | : K. Antreich |
Publisher | : Birkhäuser |
Total Pages | : 356 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034880650 |
The third Conference on Mathematical Models and Numerical Simulation in Electronic Industry brought together researchers in mathematics, electrical engineering and scientists working in industry. The contributions to this volume try to bridge the gap between basic and applied mathematics, research in electrical engineering and the needs of industry.
Author | : Alexey R. Alimov |
Publisher | : Springer Nature |
Total Pages | : 523 |
Release | : 2022-03-29 |
Genre | : Mathematics |
ISBN | : 3030909514 |
This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometric approximation theory, formulating a number of auxiliary problems for demonstration. Central ideas include the problems of existence and uniqueness of elements of best approximations as well as properties of sets including subspaces of polynomials and splines, classes of rational functions, and abstract subsets of normed linear spaces. The book begins with a brief introduction to geometric approximation theory, progressing through fundamental classical ideas and results as a basis for various approximation sets, suns, and Chebyshev systems. It concludes with a review of approximation by abstract sets and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and especially researchers interested in advanced aspects of the field.