Adaptive Finite Elements In The Discretization Of Parabolic Problems
Download Adaptive Finite Elements In The Discretization Of Parabolic Problems full books in PDF, epub, and Kindle. Read online free Adaptive Finite Elements In The Discretization Of Parabolic Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Christian A. Möller |
Publisher | : Logos Verlag Berlin GmbH |
Total Pages | : 259 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 3832528156 |
Adaptivity is a crucial tool in state-of-the-art scientific computing. However, its theoretical foundations are only understood partially and are subject of current research. This self-contained work provides theoretical basics on partial differential equations and finite element discretizations before focusing on adaptive finite element methods for time dependent problems. In this context, aspects of temporal adaptivity and error control are considered in particular. Based on the gained insights, a specific adaptive algorithm is designed and analyzed thoroughly. Most importantly, it is proven that the presented adaptive method terminates within any demanded error tolerance. Moreover, the developed algorithm is analyzed from a numerical point of view and its performance is compared to well-known standard methods. Finally, it is applied to the real-life problem of concrete carbonation, where two different discretizations are compared.
Author | : Vidar Thomee |
Publisher | : Springer Science & Business Media |
Total Pages | : 310 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662033593 |
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Author | : Jens Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 161 |
Release | : 2013-06-29 |
Genre | : Computers |
ISBN | : 3662044846 |
Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.
Author | : Vidar Thomée |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2010 |
Genre | : |
ISBN | : 9783540632368 |
Author | : Claes Johnson |
Publisher | : Courier Corporation |
Total Pages | : 290 |
Release | : 2012-05-23 |
Genre | : Mathematics |
ISBN | : 0486131599 |
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Author | : Anders Logg |
Publisher | : Springer Science & Business Media |
Total Pages | : 723 |
Release | : 2012-02-24 |
Genre | : Computers |
ISBN | : 3642230997 |
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Author | : Rüdiger Verführt |
Publisher | : Springer |
Total Pages | : 142 |
Release | : 1996-07 |
Genre | : Mathematics |
ISBN | : |
Author | : Pavel Solin |
Publisher | : CRC Press |
Total Pages | : 404 |
Release | : 2003-07-28 |
Genre | : Mathematics |
ISBN | : 0203488040 |
The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and
Author | : Chuanmiao Chen |
Publisher | : World Scientific |
Total Pages | : 294 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : 9789810232634 |
Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.
Author | : Pavel B. Bochev |
Publisher | : Springer Science & Business Media |
Total Pages | : 669 |
Release | : 2009-04-28 |
Genre | : Mathematics |
ISBN | : 0387689222 |
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.