Accurate Case Outcome Modeling

Accurate Case Outcome Modeling
Author: Arch G. Woodside
Publisher: Springer Nature
Total Pages: 264
Release: 2019-11-15
Genre: Business & Economics
ISBN: 3030268187

This volume advocates accurate case outcome prediction that does not rely on symmetric modeling. To that end, it provides theory construction and testing applications in several sub-disciplines of business and the social sciences to illustrate how to move away from symmetric theory construction. Each chapter constructs case outcome theory and includes empirical analysis of outcomes. Chapter 1 provides a foundation of symmetric variable directional-relationship theory construction and null hypothesis significance testing versus asymmetric case outcome theory construction and somewhat precise outcome testing, while Chapters 2–6 investigate these principles through a range of applications. This volume will be very useful to researchers and professionals in manufacturing, service, consulting, management, marketing, organizational studies, and more. It will also be an excellent resource for advanced statistics students in building and testing case outcome models. Data sets are included so that readers can replicate findings presented in each chapter, and grow to present and test additional theories.

Applied Predictive Modeling

Applied Predictive Modeling
Author: Max Kuhn
Publisher: Springer Science & Business Media
Total Pages: 595
Release: 2013-05-17
Genre: Medical
ISBN: 1461468493

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Clinical Prediction Models

Clinical Prediction Models
Author: Ewout W. Steyerberg
Publisher: Springer
Total Pages: 574
Release: 2019-07-22
Genre: Medical
ISBN: 3030163997

The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies

Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation
Author: Kenneth Train
Publisher: Cambridge University Press
Total Pages: 399
Release: 2009-07-06
Genre: Business & Economics
ISBN: 0521766559

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Intelligent Systems and Applications in Computer Vision

Intelligent Systems and Applications in Computer Vision
Author: Nitin Mittal
Publisher: CRC Press
Total Pages: 341
Release: 2023-11-02
Genre: Computers
ISBN: 1000985806

The book comprehensively covers a wide range of evolutionary computer vision methods and applications, feature selection and extraction for training and classification, and metaheuristic algorithms in image processing. It further discusses optimized image segmentation, its analysis, pattern recognition, and object detection. Features: Discusses machine learning-based analytics such as GAN networks, autoencoders, computational imaging, and quantum computing Covers deep learning algorithms in computer vision Showcases novel solutions such as multi-resolution analysis in imaging processing, and metaheuristic algorithms for tackling challenges associated with image processing Highlight optimization problems such as image segmentation and minimized feature design vector Presents platform and simulation tools for image processing and segmentation The book aims to get the readers familiar with the fundamentals of computational intelligence as well as the recent advancements in related technologies like smart applications of digital images, and other enabling technologies from the context of image processing and computer vision. It further covers important topics such as image watermarking, steganography, morphological processing, and optimized image segmentation. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in fields including electrical engineering, electronics, communications engineering, and computer engineering.

Financial Modelling in Practice

Financial Modelling in Practice
Author: Michael Rees
Publisher: John Wiley & Sons
Total Pages: 304
Release: 2011-11-09
Genre: Business & Economics
ISBN: 1119995205

Financial Modelling in Practice: A Concise Guide for Intermediate and Advanced Level is a practical, comprehensive and in-depth guide to financial modelling designed to cover the modelling issues that are relevant to facilitate the construction of robust and readily understandable models. Based on the authors extensive experience of building models in business and finance, and of training others how to do so this book starts with a review of Excel functions that are generally most relevant for building intermediate and advanced level models (such as Lookup functions, database and statistical functions and so on). It then discusses the principles involved in designing, structuring and building relevant, accurate and readily understandable models (including the use of sensitivity analysis techniques) before covering key application areas, such as the modelling of financial statements, of cash flow valuation, risk analysis, options and real options. Finally, the topic of financial modelling using VBA is treated. Practical examples are used throughout and model examples are included in the attached CD-ROM. Aimed at intermediate and advanced level modellers in Excel who wish to extend and consolidate their knowledge, this book is focused, practical, and application-driven, facilitating knowledge to build or audit a much wider range of financial models. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.

Adaptive and Intelligent Systems

Adaptive and Intelligent Systems
Author: Abdelhamid Bouchachia
Publisher: Springer
Total Pages: 441
Release: 2011-09-25
Genre: Computers
ISBN: 3642238572

This book constitutes the proceedings of the International Conference on Adaptive and Intelligent Systems, ICAIS 2011, held in Klagenfurt, Austria, in September 2011. The 36 full papers included in these proceedings together with the abstracts of 4 invited talks, were carefully reviewed and selected from 72 submissions. The contributions are organized under the following topical sections: incremental learning; adaptive system architecture; intelligent system engineering; data mining and pattern recognition; intelligent agents; and computational intelligence.

Principles and Practice of Structural Equation Modeling

Principles and Practice of Structural Equation Modeling
Author: Rex B. Kline
Publisher: Guilford Publications
Total Pages: 514
Release: 2023-05-24
Genre: Business & Economics
ISBN: 1462551912

Significantly revised, the fifth edition of the most complete, accessible text now covers all three approaches to structural equation modeling (SEM)--covariance-based SEM, nonparametric SEM (Pearl’s structural causal model), and composite SEM (partial least squares path modeling). With increased emphasis on freely available software tools such as the R lavaan package, the text uses data examples from multiple disciplines to provide a comprehensive understanding of all phases of SEM--what to know, best practices, and pitfalls to avoid. It includes exercises with answers, rules to remember, topic boxes, and a new self-test on significance testing, regression, and psychometrics. The companion website supplies helpful primers on these topics as well as data, syntax, and output for the book's examples, in files that can be opened with any basic text editor. New to This Edition *Chapters on composite SEM, also called partial least squares path modeling or variance-based SEM; conducting SEM analyses in small samples; and recent developments in mediation analysis. *Coverage of new reporting standards for SEM analyses; piecewise SEM, also called confirmatory path analysis; comparing alternative models fitted to the same data; and issues in multiple-group SEM. *Extended tutorials on techniques for dealing with missing data in SEM and instrumental variable methods to deal with confounding of target causal effects. Pedagogical Features *New self-test of knowledge about background topics (significance testing, regression, and psychometrics) with scoring key and online primers. *End-of-chapter suggestions for further reading and exercises with answers. *Troublesome examples from real data, with guidance for handling typical problems in analyses. *Topic boxes on special issues and boxed rules to remember. *Website promoting a learn-by-doing approach, including data, extensively annotated syntax, and output files for all the book’s detailed examples.