Abstract Harmonic Analysis
Download Abstract Harmonic Analysis full books in PDF, epub, and Kindle. Read online free Abstract Harmonic Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lynn H. Loomis |
Publisher | : Courier Corporation |
Total Pages | : 210 |
Release | : 2011-06-01 |
Genre | : Mathematics |
ISBN | : 0486481239 |
"Harmonic analysis is a branch of advanced mathematics with applications in such diverse areas as signal processing, medical imaging, and quantum mechanics. This classic monograph is the work of a prominent contributor to the field. Geared toward advanced undergraduates and graduate students, it focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition"--
Author | : Gerald B. Folland |
Publisher | : CRC Press |
Total Pages | : 317 |
Release | : 2016-02-03 |
Genre | : Mathematics |
ISBN | : 1498727158 |
A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul
Author | : Hartmut Führ |
Publisher | : Springer |
Total Pages | : 207 |
Release | : 2005-01-17 |
Genre | : Mathematics |
ISBN | : 3540315527 |
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the volume can also be read as a problem-driven introduction to the Plancherel formula.
Author | : Anton Deitmar |
Publisher | : Springer |
Total Pages | : 330 |
Release | : 2014-06-21 |
Genre | : Mathematics |
ISBN | : 3319057928 |
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.
Author | : George W. Mackey |
Publisher | : American Mathematical Soc. |
Total Pages | : 386 |
Release | : 2005-04-08 |
Genre | : Mathematics |
ISBN | : 9780821890448 |
''When I was invited to speak at the conference on the history of analysis given at Rice University [in 1977], I decided that it might be interesting to review the history of mathematics and physics in the last three hundred years or so with heavy emphasis on those parts in which harmonic analysis had played a decisive or at least a major role. I was pleased and somewhat astonished to find how much of both subjects could be included under this rubric ... The picture that gradually emerged as the various details fell into place was one that I found very beautiful, and the process of seeing it do so left me in an almost constant state of euphoria. I would like to believe that others can be led to see this picture by reading my paper, and to facilitate this I have included a large number of short expositions of topics which are not widely understood by non-specialists.'' --from the Preface This volume, containing the paper mentioned above as well as five other reprinted papers by Mackey, presents a sweeping view of the importance, utility, and beauty of harmonic analysis and its connections to other areas of mathematics and science. A seventh paper, written exclusively for this volume, attempts to unify certain themes that emerged after major discoveries in 1967 and 1968 in the areas of Lie algebras, strong interaction physics, statistical mechanics, and nonlinear partial differential equations--discoveries that may at first glance appear to be independent, but which are in fact deeply interrelated. Information for our distributors: Copublished with the London Mathematical Society beginning with volume 4. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
Author | : Gerrit van Dijk |
Publisher | : Walter de Gruyter |
Total Pages | : 234 |
Release | : 2009-12-23 |
Genre | : Mathematics |
ISBN | : 3110220202 |
This book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed. This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space. From the contents Fourier series Fourier integrals Locally compact groups Haar measures Harmonic analysis on locally compact abelian groups Theory and examples of Gelfand pairs Theory and examples of generalized Gelfand pairs
Author | : Stephan Dahlke |
Publisher | : Birkhäuser |
Total Pages | : 268 |
Release | : 2015-09-12 |
Genre | : Mathematics |
ISBN | : 3319188631 |
This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more advanced multiscale methods, chapters cover such topics as An overview of Lie theory focused on common applications in signal analysis, including the wavelet representation of the affine group, the Schrödinger representation of the Heisenberg group, and the metaplectic representation of the symplectic group An introduction to coorbit theory and how it can be combined with the shearlet transform to establish shearlet coorbit spaces Microlocal properties of the shearlet transform and its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data Mathematical techniques to construct optimal data representations for a number of signal types, with a focus on the optimal approximation of functions governed by anisotropic singularities. A unified notation is used across all of the chapters to ensure consistency of the mathematical material presented. Harmonic and Applied Analysis: From Groups to Signals is aimed at graduate students and researchers in the areas of harmonic analysis and applied mathematics, as well as at other applied scientists interested in representations of multidimensional data. It can also be used as a textbook for graduate courses in applied harmonic analysis.
Author | : Anton Deitmar |
Publisher | : Springer Science & Business Media |
Total Pages | : 154 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 147573834X |
This book introduces harmonic analysis at an undergraduate level. In doing so it covers Fourier analysis and paves the way for Poisson Summation Formula. Another central feature is that is makes the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The final goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.
Author | : Sundaram Thangavelu |
Publisher | : Springer Science & Business Media |
Total Pages | : 204 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461217725 |
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.
Author | : Yitzhak Katznelson |
Publisher | : |
Total Pages | : 292 |
Release | : 1968 |
Genre | : Harmonic analysis |
ISBN | : |