Abel Integral Equations

Abel Integral Equations
Author: Rudolf Gorenflo
Publisher: Springer
Total Pages: 225
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540469494

In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equations of the first kind problems of ill-posedness are discussed. Finally, some numerical methods are described. In the theoretical parts, emphasis is put on the aspects relevant to applications.

Singular Integral Equations

Singular Integral Equations
Author: Ricardo Estrada
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461213827

Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0

Linear and Nonlinear Integral Equations

Linear and Nonlinear Integral Equations
Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
Total Pages: 639
Release: 2011-11-24
Genre: Mathematics
ISBN: 3642214495

Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

Applied Singular Integral Equations

Applied Singular Integral Equations
Author: B. N. Mandal
Publisher: CRC Press
Total Pages: 274
Release: 2016-04-19
Genre: Mathematics
ISBN: 1439876215

The book is devoted to varieties of linear singular integral equations, with special emphasis on their methods of solution. It introduces the singular integral equations and their applications to researchers as well as graduate students of this fascinating and growing branch of applied mathematics.

Integral Equations

Integral Equations
Author: Wolfgang Hackbusch
Publisher: Birkhäuser
Total Pages: 377
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034892152

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.

Integral Equations Of First Kind

Integral Equations Of First Kind
Author: A V Bitsadze
Publisher: World Scientific
Total Pages: 274
Release: 1995-10-12
Genre: Science
ISBN: 9814500429

This book studies classes of linear integral equations of the first kind most often met in applications. Since the general theory of integral equations of the first kind has not been formed yet, the book considers the equations whose solutions either are estimated in quadratures or can be reduced to well-investigated classes of integral equations of the second kind.In this book the theory of integral equations of the first kind is constructed by using the methods of the theory of functions both of real and complex variables. Special attention is paid to the inversion formulas of model equations most often met in physics, mechanics, astrophysics, chemical physics etc. The general theory of linear equations including the Fredholm, the Noether, the Hausdorff theorems, the Hilbert-Schmidt theorem, the Picard theorem and the application of this theory to the solution of boundary problems are given in this book. The book studies the equations of the first kind with the Schwarz Kernel, the Poisson and the Neumann kernels; the Volterra integral equations of the first kind, the Abel equations and some generalizations, one-dimensional and many-dimensional analogues of the Cauchy type integral and some of their applications.

Analytical and Numerical Methods for Volterra Equations

Analytical and Numerical Methods for Volterra Equations
Author: Peter Linz
Publisher: SIAM
Total Pages: 240
Release: 1985-01-01
Genre: Mathematics
ISBN: 9781611970852

Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.

Boundary Value Problems

Boundary Value Problems
Author: F. D. Gakhov
Publisher: Elsevier
Total Pages: 585
Release: 2014-07-10
Genre: Mathematics
ISBN: 1483164985

Boundary Value Problems is a translation from the Russian of lectures given at Kazan and Rostov Universities, dealing with the theory of boundary value problems for analytic functions. The emphasis of the book is on the solution of singular integral equations with Cauchy and Hilbert kernels. Although the book treats the theory of boundary value problems, emphasis is on linear problems with one unknown function. The definition of the Cauchy type integral, examples, limiting values, behavior, and its principal value are explained. The Riemann boundary value problem is emphasized in considering the theory of boundary value problems of analytic functions. The book then analyzes the application of the Riemann boundary value problem as applied to singular integral equations with Cauchy kernel. A second fundamental boundary value problem of analytic functions is the Hilbert problem with a Hilbert kernel; the application of the Hilbert problem is also evaluated. The use of Sokhotski's formulas for certain integral analysis is explained and equations with logarithmic kernels and kernels with a weak power singularity are solved. The chapters in the book all end with some historical briefs, to give a background of the problem(s) discussed. The book will be very valuable to mathematicians, students, and professors in advanced mathematics and geometrical functions.

Numerical Solution of Integral Equations

Numerical Solution of Integral Equations
Author: Michael A. Golberg
Publisher: Springer Science & Business Media
Total Pages: 428
Release: 2013-11-11
Genre: Mathematics
ISBN: 1489925937

In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.

Integral Equations and Their Applications

Integral Equations and Their Applications
Author: Matiur Rahman
Publisher: WIT Press
Total Pages: 385
Release: 2007
Genre: Mathematics
ISBN: 1845641019

The book deals with linear integral equations, that is, equations involving an unknown function which appears under the integral sign and contains topics such as Abel's integral equation, Volterra integral equations, Fredholm integral integral equations, singular and nonlinear integral equations, orthogonal systems of functions, Green's function as a symmetric kernel of the integral equations.