Singularly Perturbed Differential Equations

Singularly Perturbed Differential Equations
Author: Herbert Goering
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 176
Release: 1984-01-14
Genre: Mathematics
ISBN: 3112735935

No detailed description available for "Singularly Perturbed Differential Equations".

Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations
Author: Robert E., Jr. O'Malley
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461209773

This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.

Singular Perturbations and Asymptotics

Singular Perturbations and Asymptotics
Author: Richard E. Meyer
Publisher: Academic Press
Total Pages: 418
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483264572

Mathematics Research Center Symposia and Advanced Seminar Series: Singular Perturbations and Asymptotics covers the lectures presented at an Advanced Seminar on Singular Perturbation and Asymptotics, held in Madison, Wisconsin on May 28-30, 1980 under the auspices of the Mathematics Research Center of the University of Wisconsin—Madison. The book focuses on the processes, methodologies, reactions, and principles involved in singular perturbations and asymptotics, including boundary value problems, equations, perturbations, water waves, and gas dynamics. The selection first elaborates on basic concepts in the analysis of singular perturbations, limit process expansions and approximate equations, and results on singularly perturbed boundary value problems. Discussions focus on quasi-linear and nonlinear problems, semilinear systems, water waves, expansion in gas dynamics, asymptotic matching principles, and classical perturbation analysis. The text then takes a look at multiple solutions of singularly perturbed systems in the conditionally stable case and singular perturbations, stochastic differential equations, and applications. The book ponders on connection problems in the parameterless case; general connection-formula problem for linear differential equations of the second order; and turning-point problems for ordinary differential equations of hydrodynamic type. Topics include the comparison equation method, boundary layer flows, compound matrix method, asymptotic solution of the connection-formula problem, and higher order equations. The selection is a valuable source of information for researchers interested in singular perturbations and asymptotics.

Layer Resolving Grids and Transformations for Singular Perturbation Problems

Layer Resolving Grids and Transformations for Singular Perturbation Problems
Author: Vladimir D. Liseikin
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 300
Release: 2018-11-05
Genre: Mathematics
ISBN: 3110941945

The approach of layer-damping coordinate transformations to treat singularly perturbed equations is a relatively new, and fast growing area in the field of applied mathematics. This monograph aims to present a clear, concise, and easily understandable description of the qualitative properties of solutions to singularly perturbed problems as well as of the essential elements, methods and codes of the technology adjusted to numerical solutions of equations with singularities by applying layer-damping coordinate transformations and corresponding layer-resolving grids. The first part of the book deals with an analytical study of estimates of the solutions and their derivatives in layers of singularities as well as suitable techniques for obtaining results. In the second part, a technique for building the coordinate transformations eliminating boundary and interior layers, is presented. Numerical algorithms based on the technique which is developed for generating layer-damping coordinate transformations and their corresponding layer-resolving meshes are presented in the final part of this volume. This book will be of value and interest to researchers in computational and applied mathematics.

Analyzing Multiscale Phenomena Using Singular Perturbation Methods

Analyzing Multiscale Phenomena Using Singular Perturbation Methods
Author: Jane Cronin
Publisher: American Mathematical Soc.
Total Pages: 201
Release: 1999
Genre: Mathematics
ISBN: 0821809296

To understand multiscale phenomena, it is essential to employ asymptotic methods to construct approximate solutions and to design effective computational algorithms. This volume consists of articles based on the AMS Short Course in Singular Perturbations held at the annual Joint Mathematics Meetings in Baltimore (MD). Leading experts discussed the following topics which they expand upon in the book: boundary layer theory, matched expansions, multiple scales, geometric theory, computational techniques, and applications in physiology and dynamic metastability. Readers will find that this text offers an up-to-date survey of this important field with numerous references to the current literature, both pure and applied.

Methods and Applications of Singular Perturbations

Methods and Applications of Singular Perturbations
Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
Total Pages: 332
Release: 2006-06-04
Genre: Mathematics
ISBN: 0387283137

Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach

Historical Developments in Singular Perturbations

Historical Developments in Singular Perturbations
Author: Robert E. O'Malley
Publisher: Springer
Total Pages: 263
Release: 2014-11-19
Genre: Mathematics
ISBN: 3319119249

This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.

Multiple Scale and Singular Perturbation Methods

Multiple Scale and Singular Perturbation Methods
Author: J.K. Kevorkian
Publisher: Springer Science & Business Media
Total Pages: 642
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461239680

This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications
Author: Johan Grasman
Publisher: Springer Science & Business Media
Total Pages: 224
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662038579

Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the ItĂ´ calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.

Multiple Time Scale Dynamics

Multiple Time Scale Dynamics
Author: Christian Kuehn
Publisher: Springer
Total Pages: 816
Release: 2015-02-25
Genre: Mathematics
ISBN: 3319123165

This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.