Network Optimization Problems: Algorithms, Applications And Complexity

Network Optimization Problems: Algorithms, Applications And Complexity
Author: Ding-zhu Du
Publisher: World Scientific
Total Pages: 417
Release: 1993-04-27
Genre:
ISBN: 9814504580

In the past few decades, there has been a large amount of work on algorithms for linear network flow problems, special classes of network problems such as assignment problems (linear and quadratic), Steiner tree problem, topology network design and nonconvex cost network flow problems.Network optimization problems find numerous applications in transportation, in communication network design, in production and inventory planning, in facilities location and allocation, and in VLSI design.The purpose of this book is to cover a spectrum of recent developments in network optimization problems, from linear networks to general nonconvex network flow problems./a

Systems and Management Science by Extremal Methods

Systems and Management Science by Extremal Methods
Author: Fred Young Phillips
Publisher: Springer Science & Business Media
Total Pages: 580
Release: 2012-12-06
Genre: Business & Economics
ISBN: 1461536006

This volume, Systems and Management Science by Extremal Methods, is the second in a series dedicated to honoring and extending the work of Abraham Charnes. The first volume, entitled Extremal Methods and Systems Analysis (Springer Verlag, Berlin, 1980), was edited by A.V. Fiacco and K.O. Kortanek. Subtitled "An International Symposium on the Occasion of Abraham Charnes' Sixtieth Birthday," this first volume consisted of a selection from papers presented at a conference in honor of Professor Charnes held at The University of Texas at Austin in September 1977. This second volume consists of papers, to be described more fully below, that were presented in a similar 2 conference held at the IC Institute of The University of Texas at Austin, Texas, in October of 1987, to honor Dr. Charnes on his seventieth birthday. All these papers were written by scholars and scientists whose own work has been affected by the contributions of this distinguished scholar and educator over a long period of time.

Separable Optimization

Separable Optimization
Author: Stefan M. Stefanov
Publisher: Springer Nature
Total Pages: 360
Release: 2022-01-01
Genre: Mathematics
ISBN: 3030784010

In this book, the theory, methods and applications of separable optimization are considered. Some general results are presented, techniques of approximating the separable problem by linear programming problem, and dynamic programming are also studied. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and convergent iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. The problems of numerical approximation of tabulated functions and numerical solution of overdetermined systems of linear algebraic equations and some systems of nonlinear equations are solved by separable convex unconstrained minimization problems. Some properties of the Knapsack polytope are also studied. This second edition includes a substantial amount of new and revised content. Three new chapters, 15-17, are included. Chapters 15-16 are devoted to the further analysis of the Knapsack problem. Chapter 17 is focused on the analysis of a nonlinear transportation problem. Three new Appendices (E-G) are also added to this edition and present technical details that help round out the coverage. Optimization problems and methods for solving the problems considered are interesting not only from the viewpoint of optimization theory, optimization methods and their applications, but also from the viewpoint of other fields of science, especially the artificial intelligence and machine learning fields within computer science. This book is intended for the researcher, practitioner, or engineer who is interested in the detailed treatment of separable programming and wants to take advantage of the latest theoretical and algorithmic results. It may also be used as a textbook for a special topics course or as a supplementary textbook for graduate courses on nonlinear and convex optimization.

Statistics

Statistics
Author: Ashley Wells
Publisher: Scientific e-Resources
Total Pages: 327
Release: 2019-01-28
Genre:
ISBN: 1839473347

Fundamental Statistics gives an open and thorough prologue to statistics utilizing the free, best in class, capable programming program R. This book is intended to both acquaint understudies with enter ideas in statistics and to give basic guidelines to utilizing R. PC programming is a fundamental device for some factual displaying and information investigation systems, helping in the usage of huge informational indexes so as to acquire valuable outcomes. R is a standout amongst the most capable and adaptable measurable programming bundles accessible, and empowers the client to apply a wide assortment of factual methods running from straightforward regression to summed up direct demonstrating. Statistics: An Introduction utilizing R is an unmistakable and compact initial course reading to measurable investigation utilizing this effective and free programming. Spreads the full scope of factual strategies prone to be have to dissect the information from investigate ventures, including basic material like t-tests and chi-squared tests, middle of the road methods like regression and examination of fluctuation, and further developed systems like summed up direct displaying.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming
Author: Yurii Nesterov
Publisher: SIAM
Total Pages: 414
Release: 1994-01-01
Genre: Mathematics
ISBN: 9781611970791

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Convex Optimization

Convex Optimization
Author: Stephen P. Boyd
Publisher: Cambridge University Press
Total Pages: 744
Release: 2004-03-08
Genre: Business & Economics
ISBN: 9780521833783

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Separable Programming

Separable Programming
Author: S.M. Stefanov
Publisher: Springer Science & Business Media
Total Pages: 323
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475734174

In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming. Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well. Audience: Advanced undergraduate and graduate students, mathematical programming/ operations research specialists.

Computational Mathematical Programming

Computational Mathematical Programming
Author: Klaus Schittkowski
Publisher: Springer Science & Business Media
Total Pages: 455
Release: 2013-06-29
Genre: Mathematics
ISBN: 3642824501

This book contains the written versions of main lectures presented at the Advanced Study Institute (ASI) on Computational Mathematical Programming, which was held in Bad Windsheim, Germany F. R., from July 23 to August 2, 1984, under the sponsorship of NATO. The ASI was organized by the Committee on Algorithms (COAL) of the Mathematical Programming Society. Co-directors were Karla Hoffmann (National Bureau of Standards, Washington, U.S.A.) and Jan Teigen (Rabobank Nederland, Zeist, The Netherlands). Ninety participants coming from about 20 different countries attended the ASI and contributed their efforts to achieve a highly interesting and stimulating meeting. Since 1947 when the first linear programming technique was developed, the importance of optimization models and their mathematical solution methods has steadily increased, and now plays a leading role in applied research areas. The basic idea of optimization theory is to minimize (or maximize) a function of several variables subject to certain restrictions. This general mathematical concept covers a broad class of possible practical applications arising in mechanical, electrical, or chemical engineering, physics, economics, medicine, biology, etc. There are both industrial applications (e.g. design of mechanical structures, production plans) and applications in the natural, engineering, and social sciences (e.g. chemical equilibrium problems, christollography problems).