Second Year Calculus

Second Year Calculus
Author: David M. Bressoud
Publisher: Springer Science & Business Media
Total Pages: 399
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461209595

Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.

Modern Advanced Mathematics for Engineers

Modern Advanced Mathematics for Engineers
Author: Vladimir Vasilʹevich Mitin
Publisher: Wiley-Interscience
Total Pages: 336
Release: 2001-04-02
Genre: Mathematics
ISBN:

A convenient single source for vital mathematical concepts, writtenby engineers and for engineers. Builds a strong foundation in modern applied mathematics forengineering students, and offers them a concise and comprehensivetreatment that summarizes and unifies their mathematical knowledgeusing a system focused on basic concepts rather than exhaustivetheorems and proofs. The authors provide several levels of explanation and exercisesinvolving increasing degrees of mathematical difficulty to recalland develop basic topics such as calculus, determinants, Gaussianelimination, differential equations, and functions of a complexvariable. They include an assortment of examples ranging fromsimple illustrations to highly involved problems as well as anumber of applications that demonstrate the concepts and methodsdiscussed throughout the book. This broad treatment also offers:*Key mathematical tools needed by engineers working incommunications, semiconductor device simulation, and control theory* Concise coverage of fundamental concepts such as sets, mappings,and linearity * Thorough discussion of topics such as distance,inner product, and orthogonality * Essentials of operatorequations, theory of approximations, transform methods, and partialdifferential equationsIt makes an excellent companion to lessgeneral engineering texts and a useful reference for practitioners.

Catalogue

Catalogue
Author: University of the Philippines
Publisher:
Total Pages: 368
Release: 1916
Genre:
ISBN:

Advanced Mathematics for Engineering Students

Advanced Mathematics for Engineering Students
Author: Brent J. Lewis
Publisher: Butterworth-Heinemann
Total Pages: 434
Release: 2021-05-20
Genre: Mathematics
ISBN: 0128236825

Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)

Advanced Engineering Mathematics

Advanced Engineering Mathematics
Author: Michael Greenberg
Publisher:
Total Pages: 1344
Release: 2013-09-20
Genre: Engineering mathematics
ISBN: 9781292042541

Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.

Advanced Linear Algebra

Advanced Linear Algebra
Author: Bruce Cooperstein
Publisher: CRC Press
Total Pages: 361
Release: 2016-04-19
Genre: Mathematics
ISBN: 1439829691

Advanced Linear Algebra focuses on vector spaces and the maps between them that preserve their structure (linear transformations). It starts with familiar concepts and then slowly builds to deeper results. Along with including many exercises and examples, each section reviews what students need to know before studying the material. The book first introduces vector spaces over fields as well as the fundamental concepts of linear combinations, span of vectors, linear independence, basis, and dimension. After covering linear transformations, it discusses the algebra of polynomials with coefficients in a field, concentrating on results that are consequences of the division algorithm. The author then develops the whole structure theory of a linear operator on a finite dimensional vector space from a collection of some simple results. He also explores the entire range of topics associated with inner product spaces, from the Gram–Schmidt process to the spectral theorems for normal and self-adjoint operators on an inner product space. The text goes on to rigorously describe the trace and determinant of linear operators and square matrices. The final two chapters focus on bilinear forms and tensor products and related material. Designed for advanced undergraduate and beginning graduate students, this textbook shows students the beauty of linear algebra. It also prepares them for further study in mathematics.

Real Analysis

Real Analysis
Author: Gerald B. Folland
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2013-06-11
Genre: Mathematics
ISBN: 1118626397

An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.

Advanced Algebra

Advanced Algebra
Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
Total Pages: 757
Release: 2007-10-11
Genre: Mathematics
ISBN: 0817646132

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.

Mathematical Proofs

Mathematical Proofs
Author: Gary Chartrand
Publisher: Pearson
Total Pages: 0
Release: 2013
Genre: Proof theory
ISBN: 9780321797094

This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.