A Quick Guide to Data Mining with Weka and Java using Weka

A Quick Guide to Data Mining with Weka and Java using Weka
Author: Eric Goh
Publisher: SVBook
Total Pages: 161
Release:
Genre: Business & Economics
ISBN:

This technical book aim to equip the reader with Weka, Data Mining in a fast and practical way. There will be many examples and explanations that are straight to the point. Contents 1. Introduction (What is data science, what is data mining, CRISP DM Model, what is text mining, three types of analytics, big data) 2. Getting Started (INstall Weka) 3. Prediction and Classification (Prediction and Classification) 4. Machine Learning Basics (KMeans Clustering, Decision Tree, Naive Bayes, KNN, Neural Network) 5. Data Mining with Weka (Data Understanding using Weka, Data Preparation using Weka, Model Building and Evaluation using Weka) 6. Java interact Weka (Use Java to use Weka, in order to develop your own prediction or classification system) 7. Conclusion This book has been taught at Udemy and EMHAcademy.com. Use the following Coupon to get the Udemy Course at $11.99: https://www.udemy.com/machine-learning-with-java-and-weka/?couponCode=SPECIALCOUPON

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Elsevier
Total Pages: 665
Release: 2011-02-03
Genre: Computers
ISBN: 0080890369

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Learn By Examples: A Quick Guide to Data Mining with RapidMiner and Weka

Learn By Examples: A Quick Guide to Data Mining with RapidMiner and Weka
Author: Eric Goh
Publisher: SVBook Pte. Ltd.
Total Pages: 227
Release:
Genre: Business & Economics
ISBN:

This book aim to equip the reader with RaidMiner and Weka and Data Mining basics. There will be many examples and explanations that are straight to the point. You will be walked through data mining process from data preparation to data analysis (descriptive statistics) and data visualization to prediction modeling (machine learning) using Weka and RapidMiner. Content Covered: - Introduction (What is data science, what is data mining, CRISP DM Model, what is text mining, three types of analytics, big data) - Getting Started (INstall Weka and RapidMiner) - Prediction and Classification (Prediction and Classification) - Machine Learning Basics (Kmeans Clustering, Decision Tree, Naive Bayes, KNN, Neural Network) - Data Mining with Weka (Data Understanding using Weka, Data Preparation using Weka, Model Building and Evaluation using Weka) - Data Mining with RapidMiner (Data Understanding using RapidMiner, Data Preparation using RapidMiner, Model Building and Evaluation using RapidMiner) - Conclusion We will be using opensource tools, hence, you don't have to worry about buying any softwares. The book is designed for non-programmers only. It will gives you a head start into Weka and RapidMiner, with a touch on data mining. This book has been taught at Udemy and EMHAcademy.com. Use the following Coupon to get the Udemy Course at $11.99: https://www.udemy.com/data-mining-with-rapidminer/?couponCode=EBOOKSPECIAL https://www.udemy.com/learn-machine-learning-with-weka/?couponCode=EBOOKSPECIAL

Data Mining and Data Warehousing

Data Mining and Data Warehousing
Author: Parteek Bhatia
Publisher: Cambridge University Press
Total Pages: 514
Release: 2019-06-27
Genre: Computers
ISBN: 110858585X

Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.

Machine Learning: End-to-End guide for Java developers

Machine Learning: End-to-End guide for Java developers
Author: Richard M. Reese
Publisher: Packt Publishing Ltd
Total Pages: 1159
Release: 2017-10-05
Genre: Computers
ISBN: 178862940X

Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learning Java libraries A comprehensive course covering a wide spectrum of topics such as machine learning and natural language through practical use-cases Who This Book Is For This course is the right resource for anyone with some knowledge of Java programming who wants to get started with Data Science and Machine learning as quickly as possible. If you want to gain meaningful insights from big data and develop intelligent applications using Java, this course is also a must-have. What You Will Learn Understand key data analysis techniques centered around machine learning Implement Java APIs and various techniques such as classification, clustering, anomaly detection, and more Master key Java machine learning libraries, their functionality, and various kinds of problems that can be addressed using each of them Apply machine learning to real-world data for fraud detection, recommendation engines, text classification, and human activity recognition Experiment with semi-supervised learning and stream-based data mining, building high-performing and real-time predictive models Develop intelligent systems centered around various domains such as security, Internet of Things, social networking, and more In Detail Machine Learning is one of the core area of Artificial Intelligence where computers are trained to self-learn, grow, change, and develop on their own without being explicitly programmed. In this course, we cover how Java is employed to build powerful machine learning models to address the problems being faced in the world of Data Science. The course demonstrates complex data extraction and statistical analysis techniques supported by Java, applying various machine learning methods, exploring machine learning sub-domains, and exploring real-world use cases such as recommendation systems, fraud detection, natural language processing, and more, using Java programming. The course begins with an introduction to data science and basic data science tasks such as data collection, data cleaning, data analysis, and data visualization. The next section has a detailed overview of statistical techniques, covering machine learning, neural networks, and deep learning. The next couple of sections cover applying machine learning methods using Java to a variety of chores including classifying, predicting, forecasting, market basket analysis, clustering stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, and deep learning. The last section highlights real-world test cases such as performing activity recognition, developing image recognition, text classification, and anomaly detection. The course includes premium content from three of our most popular books: Java for Data Science Machine Learning in Java Mastering Java Machine Learning On completion of this course, you will understand various machine learning techniques, different machine learning java algorithms you can use to gain data insights, building data models to analyze larger complex data sets, and incubating applications using Java and machine learning algorithms in the field of artificial intelligence. Style and approach This comprehensive course proceeds from being a tutorial to a practical guide, providing an introduction to machine learning and different machine learning techniques, exploring machine learning with Java libraries, and demonstrating real-world machine learning use cases using the Java platform.

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Morgan Kaufmann
Total Pages: 414
Release: 2000
Genre: Computers
ISBN: 9781558605527

This book offers a thorough grounding in machine learning concepts combined with practical advice on applying machine learning tools and techniques in real-world data mining situations. Clearly written and effectively illustrated, this book is ideal for anyone involved at any level in the work of extracting usable knowledge from large collections of data. Complementing the book's instruction is fully functional machine learning software.

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Morgan Kaufmann
Total Pages: 655
Release: 2016-10-01
Genre: Computers
ISBN: 0128043571

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. It contains - Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book - Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book - Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. - Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects - Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface - Includes open-access online courses that introduce practical applications of the material in the book

Machine Learning Mastery With Weka

Machine Learning Mastery With Weka
Author: Jason Brownlee
Publisher: Machine Learning Mastery
Total Pages: 247
Release: 2016-06-23
Genre: Computers
ISBN:

Machine learning is not just for professors. Weka is a top machine learning platform that provides an easy-to-use graphical interface and state-of-the-art algorithms. In this Ebook, learn exactly how to get started with applied machine learning using the Weka platform.

Machine Learning for Data Streams

Machine Learning for Data Streams
Author: Albert Bifet
Publisher: MIT Press
Total Pages: 262
Release: 2018-03-16
Genre: Computers
ISBN: 0262346052

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Elsevier
Total Pages: 558
Release: 2005-07-13
Genre: Computers
ISBN: 008047702X

Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. - Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods - Performance improvement techniques that work by transforming the input or output