A Primer of Abstract Mathematics

A Primer of Abstract Mathematics
Author: Robert B. Ash
Publisher: American Mathematical Soc.
Total Pages: 193
Release: 2020-03-02
Genre: Mathematics
ISBN: 1470457091

The purpose of this book is to prepare the reader for coping with abstract mathematics. The intended audience is both students taking a first course in abstract algebra who feel the need to strengthen their background and those from a more applied background who need some experience in dealing with abstract ideas. Learning any area of abstract mathematics requires not only ability to write formally but also to think intuitively about what is going on and to describe that process clearly and cogently in ordinary English. Ash tries to aid intuition by keeping proofs short and as informal as possible and using concrete examples as illustration. Thus, it is an ideal textbook for an audience with limited experience in formalism and abstraction. A number of expository innovations are included, for example, an informal development of set theory which teaches students all the basic results for algebra in one chapter.

An Introduction to Abstract Mathematics

An Introduction to Abstract Mathematics
Author: Robert J. Bond
Publisher: Waveland Press
Total Pages: 344
Release: 2007-08-24
Genre: Mathematics
ISBN: 1478608056

Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.

Abstract Algebra

Abstract Algebra
Author: Dan Saracino
Publisher: Waveland Press
Total Pages: 320
Release: 2008-09-02
Genre: Mathematics
ISBN: 1478610131

The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.

A Book of Abstract Algebra

A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 402
Release: 2010-01-14
Genre: Mathematics
ISBN: 0486474178

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

A Primer of Algebraic D-Modules

A Primer of Algebraic D-Modules
Author: S. C. Coutinho
Publisher: Cambridge University Press
Total Pages: 223
Release: 1995-09-07
Genre: Mathematics
ISBN: 0521551196

The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.

Introduction to Abstract Algebra

Introduction to Abstract Algebra
Author: Benjamin Fine
Publisher: JHU Press
Total Pages: 583
Release: 2014-07-01
Genre: Mathematics
ISBN: 1421411776

A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic

A Primer of Real Analytic Functions

A Primer of Real Analytic Functions
Author: KRANTZ
Publisher: Birkhäuser
Total Pages: 190
Release: 2013-03-09
Genre: Science
ISBN: 3034876440

The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.

Abstract Algebra

Abstract Algebra
Author: Paul B. Garrett
Publisher: CRC Press
Total Pages: 467
Release: 2007-09-25
Genre: Mathematics
ISBN: 1584886897

Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal mapping properties, rather than by constructions whose technical details are irrelevant. Addresses Common Curricular Weaknesses In addition to standard introductory material on the subject, such as Lagrange's and Sylow's theorems in group theory, the text provides important specific illustrations of general theory, discussing in detail finite fields, cyclotomic polynomials, and cyclotomic fields. The book also focuses on broader background, including brief but representative discussions of naive set theory and equivalents of the axiom of choice, quadratic reciprocity, Dirichlet's theorem on primes in arithmetic progressions, and some basic complex analysis. Numerous worked examples and exercises throughout facilitate a thorough understanding of the material.

A Primer of Abstract Algebra

A Primer of Abstract Algebra
Author: Robert B. Ash
Publisher: Cambridge University Press
Total Pages: 196
Release: 1998-09-10
Genre: Mathematics
ISBN: 9780883857083

The purpose of this book is to prepare the reader for coping with abstract mathematics. The intended audience is both students taking a first course in abstract algebra who feel the need to strengthen their background, and those from a more applied background who need some experience in dealing with abstract ideas. Learning any area of abstract mathematics requires not only ability to write formally but also to think intuitively about what is going on and to describe that process clearly and cogently in ordinary English. Ash tries to aid intuition by keeping proofs short and as informal as possible, and using concrete examples as illustration. Thus it is an ideal textbook for an audience with limited experience in formalism and abstraction. A number of expository innovations are included, for example, an informal development of set theory which teaches students all the basic results for algebra in one chapter.

Basic Probability Theory

Basic Probability Theory
Author: Robert B. Ash
Publisher: Courier Corporation
Total Pages: 354
Release: 2008-06-26
Genre: Mathematics
ISBN: 0486466280

This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.