A Practical Guide to Artificial Intelligence and Data Analytics

A Practical Guide to Artificial Intelligence and Data Analytics
Author: Rayan Wali
Publisher: Rayan Wali
Total Pages: 605
Release: 2021-06-12
Genre: Computers
ISBN:

Whether you are looking to prepare for AI/ML/Data Science job interviews or you are a beginner in the field of Data Science and AI, this book is designed for engineers and AI enthusiasts like you at all skill levels. Taking a different approach from a traditional textbook style of instruction, A Practical Guide to AI and Data Analytics touches on all of the fundamental topics you will need to understand deeper into machine learning and artificial intelligence research, literature, and practical applications with its four parts: Part I: Concept Instruction Part II: 8 Full-Length Case Studies Part III: 50+ Mixed Exercises Part IV: A Full-Length Assessment With an illustrative approach to instruction, worked examples, and case studies, this easy-to-understand book simplifies many of the AI and Data Analytics key concepts, leading to an improvement of AI/ML system design skills.

Practical Machine Learning for Data Analysis Using Python

Practical Machine Learning for Data Analysis Using Python
Author: Abdulhamit Subasi
Publisher: Academic Press
Total Pages: 536
Release: 2020-06-05
Genre: Computers
ISBN: 0128213809

Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author: John D. Kelleher
Publisher: MIT Press
Total Pages: 853
Release: 2020-10-20
Genre: Computers
ISBN: 0262361108

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Artificial Intelligence for Marketing

Artificial Intelligence for Marketing
Author: Jim Sterne
Publisher: John Wiley & Sons
Total Pages: 373
Release: 2017-08-14
Genre: Business & Economics
ISBN: 1119406331

A straightforward, non-technical guide to the next major marketing tool Artificial Intelligence for Marketing presents a tightly-focused introduction to machine learning, written specifically for marketing professionals. This book will not teach you to be a data scientist—but it does explain how Artificial Intelligence and Machine Learning will revolutionize your company's marketing strategy, and teach you how to use it most effectively. Data and analytics have become table stakes in modern marketing, but the field is ever-evolving with data scientists continually developing new algorithms—where does that leave you? How can marketers use the latest data science developments to their advantage? This book walks you through the "need-to-know" aspects of Artificial Intelligence, including natural language processing, speech recognition, and the power of Machine Learning to show you how to make the most of this technology in a practical, tactical way. Simple illustrations clarify complex concepts, and case studies show how real-world companies are taking the next leap forward. Straightforward, pragmatic, and with no math required, this book will help you: Speak intelligently about Artificial Intelligence and its advantages in marketing Understand how marketers without a Data Science degree can make use of machine learning technology Collaborate with data scientists as a subject matter expert to help develop focused-use applications Help your company gain a competitive advantage by leveraging leading-edge technology in marketing Marketing and data science are two fast-moving, turbulent spheres that often intersect; that intersection is where marketing professionals pick up the tools and methods to move their company forward. Artificial Intelligence and Machine Learning provide a data-driven basis for more robust and intensely-targeted marketing strategies—and companies that effectively utilize these latest tools will reap the benefit in the marketplace. Artificial Intelligence for Marketing provides a nontechnical crash course to help you stay ahead of the curve.

Leading with AI and Analytics: Build Your Data Science IQ to Drive Business Value

Leading with AI and Analytics: Build Your Data Science IQ to Drive Business Value
Author: Eric Anderson
Publisher: McGraw Hill Professional
Total Pages: 353
Release: 2020-11-23
Genre: Business & Economics
ISBN: 1260459152

Lead your organization to become evidence-driven Data. It’s the benchmark that informs corporate projections, decision-making, and analysis. But, why do many organizations that see themselves as data-driven fail to thrive? In Leading with AI and Analytics, two renowned experts from the Kellogg School of Management show business leaders how to transform their organization to become evidence-driven, which leads to real, measurable changes that can help propel their companies to the top of their industries. The availability of unprecedented technology-enabled tools has made AI (Artificial Intelligence) an essential component of business analytics. But what’s often lacking are the leadership skills to integrate these technologies to achieve maximum value. Here, the authors provide a comprehensive game plan for developing that all-important human factor to get at the heart of data science: the ability to apply analytical thinking to real-world problems. Each of these tools and techniques comes to powerful life through a wealth of powerful case studies and real-world success stories. Inside, you’ll find the essential tools to help you: Develop a strong data science intuition quotient Lead and scale AI and analytics throughout your organization Move from “best-guess” decision making to evidence-based decisions Craft strategies and tactics to create real impact Written for anyone in a leadership or management role—from C-level/unit team managers to rising talent—this powerful, hands-on guide meets today’s growing need for real-world tools to lead and succeed with data.

Business Intelligence

Business Intelligence
Author: Richard Hurley
Publisher:
Total Pages: 106
Release: 2020-01-19
Genre: Self-Help
ISBN: 9781952191114

In the modern business world, the pace of action continues to quicken. Businesses need to be able to get actionable insights from their data in order to make the right decisions to act rapidly and effectively.

Artificial Intelligence and Machine Learning for Business

Artificial Intelligence and Machine Learning for Business
Author: Steven Finlay
Publisher: Relativistic
Total Pages: 194
Release: 2018-07
Genre:
ISBN: 9781999730345

Artificial Intelligence (AI) and Machine Learning are now mainstream business tools. They are being applied across many industries to increase profits, reduce costs, save lives and improve customer experiences. Organizations which understand these tools and know how to use them are benefiting at the expense of their rivals. Artificial Intelligence and Machine Learning for Business cuts through the hype and technical jargon that is often associated with these subjects. It delivers a simple and concise introduction for managers and business people. The focus is very much on practical application and how to work with technical specialists (data scientists) to maximize the benefits of these technologies. This third edition has been substantially revised and updated. It contains several new chapters and covers a broader set of topics than before, but retains the no-nonsense style of the original.

Hiring Data Scientists and Machine Learning Engineers

Hiring Data Scientists and Machine Learning Engineers
Author: Roy Keyes
Publisher:
Total Pages:
Release: 2021-08-30
Genre:
ISBN: 9781637905258

Hiring Data Scientists and Machine Learning Engineers is a concise, practical guide to help you hire the right people for your organization. The book will help you navigate the plethora of data science related roles and skills and help you create an effective hiring strategy to suit your organization's needs.

Artificial Intelligence In Medicine: A Practical Guide For Clinicians

Artificial Intelligence In Medicine: A Practical Guide For Clinicians
Author: Campion Quinn
Publisher: World Scientific
Total Pages: 354
Release: 2024-02-06
Genre: Medical
ISBN: 9811284121

'Artificial Intelligence in Medicine' is a comprehensive guide exploring the transformative impact of artificial intelligence (AI) in healthcare. The book delves into the foundational concepts and historical development of AI in medicine, highlighting data collection, preprocessing, and feature extraction crucial for medical applications. It showcases the benefits of AI, such as accurate diagnoses and personalized treatments, while addressing ethical and regulatory considerations.The book examines the practical aspects of AI implementation in clinical practice and emphasizes the human aspect of AI in healthcare and patient engagement. Readers can gain insights into the role of AI in clinical decision support, collaborative learning, and knowledge sharing. It concludes with a glimpse into the future of AI-driven healthcare, exploring the emerging technologies and trends in the rapidly evolving field of AI in medicine.