A Pathway Into Number Theory

A Pathway Into Number Theory
Author: R. P. Burn
Publisher: Cambridge University Press
Total Pages: 282
Release: 1997
Genre: Mathematics
ISBN: 9780521575409

This book leads readers from simple number work to the point where they can prove the classical results of elementary number theory for themselves.

A Pathway Into Number Theory

A Pathway Into Number Theory
Author: R. P. Burn
Publisher: Cambridge University Press
Total Pages: 282
Release: 1997
Genre: Mathematics
ISBN: 9780521575409

This book leads readers from simple number work to the point where they can prove the classical results of elementary number theory for themselves.

Groups

Groups
Author: R. P. Burn
Publisher: Cambridge University Press
Total Pages: 260
Release: 1987-09-03
Genre: Mathematics
ISBN: 9780521347938

Following the same successful approach as Dr. Burn's previous book on number theory, this text consists of a carefully constructed sequence of questions that will enable the reader, through participation, to study all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationships to 3-dimensional isometries are covered, and the climax of the book is a study of the crystallographic groups, with a complete analysis of these groups in two dimensions.

Problems in Algebraic Number Theory

Problems in Algebraic Number Theory
Author: M. Ram Murty
Publisher: Springer Science & Business Media
Total Pages: 354
Release: 2005-09-28
Genre: Mathematics
ISBN: 0387269983

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Introduction to Analytic Number Theory

Introduction to Analytic Number Theory
Author: Tom M. Apostol
Publisher: Springer Science & Business Media
Total Pages: 352
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475755791

"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS

Roads to Infinity

Roads to Infinity
Author: John Stillwell
Publisher: CRC Press
Total Pages: 202
Release: 2010-07-13
Genre: Mathematics
ISBN: 1439865507

Winner of a CHOICE Outstanding Academic Title Award for 2011!This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is h

A Path to Combinatorics for Undergraduates

A Path to Combinatorics for Undergraduates
Author: Titu Andreescu
Publisher: Springer Science & Business Media
Total Pages: 235
Release: 2013-12-01
Genre: Mathematics
ISBN: 081768154X

This unique approach to combinatorics is centered around unconventional, essay-type combinatorial examples, followed by a number of carefully selected, challenging problems and extensive discussions of their solutions. Topics encompass permutations and combinations, binomial coefficients and their applications, bijections, inclusions and exclusions, and generating functions. Each chapter features fully-worked problems, including many from Olympiads and other competitions, as well as a number of problems original to the authors; at the end of each chapter are further exercises to reinforce understanding, encourage creativity, and build a repertory of problem-solving techniques. The authors' previous text, "102 Combinatorial Problems," makes a fine companion volume to the present work, which is ideal for Olympiad participants and coaches, advanced high school students, undergraduates, and college instructors. The book's unusual problems and examples will interest seasoned mathematicians as well. "A Path to Combinatorics for Undergraduates" is a lively introduction not only to combinatorics, but to mathematical ingenuity, rigor, and the joy of solving puzzles.

Quaternion Algebras

Quaternion Algebras
Author: John Voight
Publisher: Springer Nature
Total Pages: 877
Release: 2021-06-28
Genre: Mathematics
ISBN: 3030566943

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.

Algebraic Number Theory and Fermat's Last Theorem

Algebraic Number Theory and Fermat's Last Theorem
Author: Ian Stewart
Publisher: CRC Press
Total Pages: 334
Release: 2001-12-12
Genre: Mathematics
ISBN: 143986408X

First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Number Theory

Number Theory
Author:
Publisher: Academic Press
Total Pages: 449
Release: 1986-05-05
Genre: Mathematics
ISBN: 0080873324

This book is written for the student in mathematics. Its goal is to give a view of the theory of numbers, of the problems with which this theory deals, and of the methods that are used. We have avoided that style which gives a systematic development of the apparatus and have used instead a freer style, in which the problems and the methods of solution are closely interwoven. We start from concrete problems in number theory. General theories arise as tools for solving these problems. As a rule, these theories are developed sufficiently far so that the reader can see for himself their strength and beauty, and so that he learns to apply them. Most of the questions that are examined in this book are connected with the theory of diophantine equations - that is, with the theory of the solutions in integers of equations in several variables. However, we also consider questions of other types; for example, we derive the theorem of Dirichlet on prime numbers in arithmetic progressions and investigate the growth of the number of solutions of congruences.