A New Approach To Kazhdan Lusztig Theory Of Type B Via Quantum Symmetric Pairs
Download A New Approach To Kazhdan Lusztig Theory Of Type B Via Quantum Symmetric Pairs full books in PDF, epub, and Kindle. Read online free A New Approach To Kazhdan Lusztig Theory Of Type B Via Quantum Symmetric Pairs ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Huanchen Bao |
Publisher | : |
Total Pages | : 148 |
Release | : 2018 |
Genre | : Hecke algebras |
ISBN | : |
We show that Hecke algebra of type B and a coideal subalgebra of the type A quantum group satsify a double centralizer property, generalizing the Schur-Jimbo duality in type A. The quantum group of type A and its coideal subalgebra form a quantum symmetric pair. A new theory of canonical bases arising from quantum symmetric pairs is initiated. It is then applied to formulate and establish for the first time a Kazhdan-Lusztig theory for the BGG category [O] of the orthosymplectic Lie superalgebras osp(2m + 1[vertical bar]2n). In particular, our approach provides a new formulation of the Kazhdan-Lusztig theory for Lie algebras of type B/C.
Author | : Zhaobing Fan |
Publisher | : American Mathematical Soc. |
Total Pages | : 123 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470441756 |
The quantum groups of finite and affine type $A$ admit geometric realizations in terms of partial flag varieties of finite and affine type $A$. Recently, the quantum group associated to partial flag varieties of finite type $B/C$ is shown to be a coideal subalgebra of the quantum group of finite type $A$.
Author | : Zhaobing Fan |
Publisher | : American Mathematical Society |
Total Pages | : 108 |
Release | : 2023-01-18 |
Genre | : Mathematics |
ISBN | : 1470456265 |
Author | : Erik Koelink |
Publisher | : American Mathematical Soc. |
Total Pages | : 362 |
Release | : 2022-08-30 |
Genre | : Education |
ISBN | : 1470465205 |
This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.
Author | : Jie Du |
Publisher | : World Scientific |
Total Pages | : 490 |
Release | : 2022-10-21 |
Genre | : Mathematics |
ISBN | : 9811263507 |
Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.
Author | : Srikanth B. Iyengar |
Publisher | : American Mathematical Society |
Total Pages | : 108 |
Release | : 2022-07-19 |
Genre | : Mathematics |
ISBN | : 1470471590 |
This book is aimed to provide an introduction to local cohomology which takes cognizance of the breadth of its interactions with other areas of mathematics. It covers topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Gröbner bases in the commutative setting as well as for $D$-modules, the Frobenius morphism and characteristic $p$ methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups. The book begins with basic notions in geometry, sheaf theory, and homological algebra leading to the definition and basic properties of local cohomology. Then it develops the theory in a number of different directions, and draws connections with topology, geometry, combinatorics, and algorithmic aspects of the subject.
Author | : Pramod N. Achar |
Publisher | : American Mathematical Society |
Total Pages | : 536 |
Release | : 2024-07-11 |
Genre | : Mathematics |
ISBN | : 1470471175 |
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
Author | : George Lusztig |
Publisher | : Springer Science & Business Media |
Total Pages | : 361 |
Release | : 2010-10-27 |
Genre | : Mathematics |
ISBN | : 0817647171 |
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.
Author | : David Jordan |
Publisher | : Cambridge University Press |
Total Pages | : 407 |
Release | : 2023-08-17 |
Genre | : Mathematics |
ISBN | : 1009097350 |
Expanding upon the material delivered during the LMS Autumn Algebra School 2020, this volume reflects the fruitful connections between different aspects of representation theory. Each survey article addresses a specific subject from a modern angle, beginning with an exploration of the representation theory of associative algebras, followed by the coverage of important developments in Lie theory in the past two decades, before the final sections introduce the reader to three strikingly different aspects of group theory. Written at a level suitable for graduate students and researchers in related fields, this book provides pure mathematicians with a springboard into the vast and growing literature in each area.
Author | : Geoffrey Mason |
Publisher | : Springer |
Total Pages | : 403 |
Release | : 2014-10-31 |
Genre | : Mathematics |
ISBN | : 3319098047 |
The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. These workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. At the beginning, the top universities in California and Utah hosted the meetings which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. The contributors to this volume have all participated in these Lie theory workshops and include in this volume expository articles which cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned-above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.