A Modern Approach to Functional Integration

A Modern Approach to Functional Integration
Author: John R. Klauder
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2010-11-08
Genre: Mathematics
ISBN: 0817647910

This text takes advantage of recent developments in the theory of path integration and attempts to make a major paradigm shift in how the art of functional integration is practiced. The techniques developed in the work will prove valuable to graduate students and researchers in physics, chemistry, mathematical physics, and applied mathematics who find it necessary to deal with solutions to wave equations, both quantum and beyond. A Modern Approach to Functional Integration offers insight into a number of contemporary research topics, which may lead to improved methods and results that cannot be found elsewhere in the textbook literature. Exercises are included in most chapters, making the book suitable for a one-semester graduate course on functional integration.

A Modern Approach to Functional Integration

A Modern Approach to Functional Integration
Author: John R. Klauder
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2010-11-17
Genre: Mathematics
ISBN: 0817647902

This text takes advantage of recent developments in the theory of path integration and attempts to make a major paradigm shift in how the art of functional integration is practiced. The techniques developed in the work will prove valuable to graduate students and researchers in physics, chemistry, mathematical physics, and applied mathematics who find it necessary to deal with solutions to wave equations, both quantum and beyond. A Modern Approach to Functional Integration offers insight into a number of contemporary research topics, which may lead to improved methods and results that cannot be found elsewhere in the textbook literature. Exercises are included in most chapters, making the book suitable for a one-semester graduate course on functional integration.

Functional Integration

Functional Integration
Author: Pierre Cartier
Publisher: Cambridge University Press
Total Pages: 7
Release: 2006-11-30
Genre: Science
ISBN: 1139462881

In this text, Cartier and DeWitt-Morette, using their complementary interests and expertise, successfully condense and apply the essentials of Functional Integration to a great variety of systems, showing this mathematically elusive technique to be a robust, user friendly and multipurpose tool.

Navier-Stokes Turbulence

Navier-Stokes Turbulence
Author: Wolfgang Kollmann
Publisher: Springer Nature
Total Pages: 744
Release: 2019-11-21
Genre: Science
ISBN: 3030318699

The book serves as a core text for graduate courses in advanced fluid mechanics and applied science. It consists of two parts. The first provides an introduction and general theory of fully developed turbulence, where treatment of turbulence is based on the linear functional equation derived by E. Hopf governing the characteristic functional that determines the statistical properties of a turbulent flow. In this section, Professor Kollmann explains how the theory is built on divergence free Schauder bases for the phase space of the turbulent flow and the space of argument vector fields for the characteristic functional. Subsequent chapters are devoted to mapping methods, homogeneous turbulence based upon the hypotheses of Kolmogorov and Onsager, intermittency, structural features of turbulent shear flows and their recognition.

Quantum Physics

Quantum Physics
Author: James Glimm
Publisher: Springer Science & Business Media
Total Pages: 551
Release: 2012-12-06
Genre: Science
ISBN: 1461247284

Describes fifteen years' work which has led to the construc- tion of solutions to non-linear relativistic local field e- quations in 2 and 3 space-time dimensions. Gives proof of the existence theorem in 2 dimensions and describes many properties of the solutions.

System Theory -- A Modern Approach, Volume 1

System Theory -- A Modern Approach, Volume 1
Author: Henri Bourles
Publisher: John Wiley & Sons
Total Pages: 324
Release: 2024-07-11
Genre: Mathematics
ISBN: 1786309858

The theory of dynamic systems is addressed in this book in accordance with the “modern” approach, heir to algebraic analysis, which has been implemented since the last decade of the 20th century. After a reminder of the evolution of the representation of systems based on transfer functions or matrices, the duality of controllability and observability is revisited, and new results are produced concerning time-varying discrete-time systems. To complete and improve the existing analyses, the poles and zeros of linear systems and their interconnections are presented in a new way, as well as the problem of systems governed by functional differential equations (of retarded or neutral type) and their stabilization. This book also proposes known and original mathematical complements.

Statistical Approach to Quantum Field Theory

Statistical Approach to Quantum Field Theory
Author: Andreas Wipf
Publisher: Springer Nature
Total Pages: 568
Release: 2021-10-25
Genre: Science
ISBN: 3030832635

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.

Topics in Classical and Modern Analysis

Topics in Classical and Modern Analysis
Author: Martha Abell
Publisher: Springer Nature
Total Pages: 384
Release: 2019-10-21
Genre: Mathematics
ISBN: 3030122778

Different aspects of harmonic analysis, complex analysis, sampling theory, approximation theory and related topics are covered in this volume. The topics included are Fourier analysis, Padè approximation, dynamical systems and difference operators, splines, Christoffel functions, best approximation, discrepancy theory and Jackson-type theorems of approximation. The articles of this collection were originated from the International Conference in Approximation Theory, held in Savannah, GA in 2017, and organized by the editors of this volume.

Frames and Other Bases in Abstract and Function Spaces

Frames and Other Bases in Abstract and Function Spaces
Author: Isaac Pesenson
Publisher: Birkhäuser
Total Pages: 437
Release: 2017-06-11
Genre: Mathematics
ISBN: 3319555502

The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling. A systematic approach to shearlets with applications to wavefront sets and function spaces. Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions. Kernel methods, wavelets, and frames on compact and non-compact manifolds.

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science
Author: Isaac Pesenson
Publisher: Birkhäuser
Total Pages: 512
Release: 2017-08-09
Genre: Mathematics
ISBN: 3319555561

The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy.