A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side

A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side
Author: Chen Wan
Publisher: American Mathematical Soc.
Total Pages: 102
Release: 2019-12-02
Genre: Education
ISBN: 1470436868

Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.

Families of Automorphic Forms and the Trace Formula

Families of Automorphic Forms and the Trace Formula
Author: Werner Müller
Publisher: Springer
Total Pages: 581
Release: 2016-09-20
Genre: Mathematics
ISBN: 3319414240

Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Harmonic Analysis, the Trace Formula, and Shimura Varieties
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
Total Pages: 708
Release: 2005
Genre: Mathematics
ISBN: 9780821838440

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.

Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula

Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula
Author: James Arthur
Publisher: Princeton University Press
Total Pages: 252
Release: 1989-06-21
Genre: Mathematics
ISBN: 9780691085180

A general principle, discovered by Robert Langlands and named by him the "functoriality principle," predicts relations between automorphic forms on arithmetic subgroups of different reductive groups. Langlands functoriality relates the eigenvalues of Hecke operators acting on the automorphic forms on two groups (or the local factors of the "automorphic representations" generated by them). In the few instances where such relations have been probed, they have led to deep arithmetic consequences. This book studies one of the simplest general problems in the theory, that of relating automorphic forms on arithmetic subgroups of GL(n,E) and GL(n,F) when E/F is a cyclic extension of number fields. (This is known as the base change problem for GL(n).) The problem is attacked and solved by means of the trace formula. The book relies on deep and technical results obtained by several authors during the last twenty years. It could not serve as an introduction to them, but, by giving complete references to the published literature, the authors have made the work useful to a reader who does not know all the aspects of the theory of automorphic forms.

Weil's Conjecture for Function Fields

Weil's Conjecture for Function Fields
Author: Dennis Gaitsgory
Publisher: Princeton University Press
Total Pages: 321
Release: 2019-02-19
Genre: Mathematics
ISBN: 0691184437

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil’s conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil’s conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting l-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil’s conjecture. The proof of the product formula will appear in a sequel volume.

Lectures on the Arthur-Selberg Trace Formula

Lectures on the Arthur-Selberg Trace Formula
Author: Stephen S. Gelbart
Publisher: American Mathematical Soc.
Total Pages: 112
Release: 1996
Genre: Mathematics
ISBN: 0821805711

The Arthur-Selberg trace formula is an equality between two kinds of traces: the geometric terms given by the conjugacy classes of a group and the spectral terms given by the induced representations. In general, these terms require a truncation in order to converge, which leads to an equality of truncated kernels. The formulas are difficult in general and even the case of $GL$(2) is nontrivial. The book gives proof of Arthur's trace formula of the 1970s and 1980s, with special attention given to $GL$(2). The problem is that when the truncated terms converge, they are also shown to be polynomial in the truncation variable and expressed as ``weighted'' orbital and ``weighted'' characters. In some important cases the trace formula takes on a simple form over $G$. The author gives some examples of this, and also some examples of Jacquet's relative trace formula. This work offers for the first time a simultaneous treatment of a general group with the case of $GL$(2). It also treats the trace formula with the example of Jacquet's relative formula. Features: Discusses why the terms of the geometric and spectral type must be truncated, and why the resulting truncations are polynomials in the truncation of value $T$. Brings into play the significant tool of ($G, M$) families and how the theory of Paley-Weiner is applied. Explains why the truncation formula reduces to a simple formula involving only the elliptic terms on the geometric sides with the representations appearing cuspidally on the spectral side (applies to Tamagawa numbers). Outlines Jacquet's trace formula and shows how it works for $GL$(2).

Geometric Aspects of the Trace Formula

Geometric Aspects of the Trace Formula
Author: Werner Müller
Publisher: Springer
Total Pages: 461
Release: 2018-10-11
Genre: Mathematics
ISBN: 3319948334

The second of three volumes devoted to the study of the trace formula, these proceedings focus on automorphic representations of higher rank groups. Based on research presented at the 2016 Simons Symposium on Geometric Aspects of the Trace Formula that took place in Schloss Elmau, Germany, the volume contains both original research articles and articles that synthesize current knowledge and future directions in the field. The articles discuss topics such as the classification problem of representations of reductive groups, the structure of Langlands and Arthur packets, interactions with geometric representation theory, and conjectures on the global automorphic spectrum. Suitable for both graduate students and researchers, this volume presents the latest research in the field. Readers of the first volume Families of Automorphic Forms and the Trace Formula will find this a natural continuation of the study of the trace formula.

Trace Formulas

Trace Formulas
Author: Steven Lord
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 514
Release: 2023-04-03
Genre: Mathematics
ISBN: 3110700174

This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes’ noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes’ character formula concerning the Hochschild class of the Chern character.

La Formule des Traces Locale Tordue

La Formule des Traces Locale Tordue
Author: Colette Moeglin
Publisher: American Mathematical Soc.
Total Pages: 196
Release: 2018-02-23
Genre: Mathematics
ISBN: 1470427710

A note to readers: This book is in French. The text has two chapters. The first one, written by Waldspurger, proves a twisted version of the local trace formula of Arthur over a local field. This formula is an equality between two expressions, one involving weighted orbital integrals, the other one involving weighted characters. The authors follow Arthur's proof, but the treatement of the spectral side is more complicated in the twisted situation. They need to use the combinatorics of the “Morning Seminar”. The authors' local trace formula has the same consequences as in Arthur's paper on elliptic characters. The second chapter, written by Moeglin, gives a symmetric form of the local trace formula as in Arthur's paper on Fourier Transform of Orbital integral and describes any twisted orbital integral, in the p-adic case, as integral of characters.