Topics in Applied Analysis and Optimisation

Topics in Applied Analysis and Optimisation
Author: Michael Hintermüller
Publisher: Springer Nature
Total Pages: 406
Release: 2019-11-27
Genre: Mathematics
ISBN: 3030331164

This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.

Evaluating Gas Network Capacities

Evaluating Gas Network Capacities
Author: Thorsten Koch
Publisher: SIAM
Total Pages: 368
Release: 2015-03-17
Genre: Mathematics
ISBN: 1611973686

"This book deals with a simple sounding question whether a certain amount of gas can be transported by a given pipeline network. While well studied for a single pipeline, this question gets extremely difficult if we consider a meshed nation wide gas transportation network, taking into account all the technical details and discrete decisions, as well as regulations, contracts, and varying demand. This book describes several mathematical models to answer these questions, discusses their merits and disadvantages, explains the necessary technical and regulatory background, and shows how to solve this question using sophisticated mathematical optimization algorithms."--

Robust Optimization

Robust Optimization
Author: Aharon Ben-Tal
Publisher: Princeton University Press
Total Pages: 565
Release: 2009-08-10
Genre: Mathematics
ISBN: 1400831059

Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Bulletin of the Atomic Scientists

Bulletin of the Atomic Scientists
Author:
Publisher:
Total Pages: 56
Release: 1953-05
Genre:
ISBN:

The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.

Decision Making Under Uncertainty

Decision Making Under Uncertainty
Author: Mykel J. Kochenderfer
Publisher: MIT Press
Total Pages: 350
Release: 2015-07-24
Genre: Computers
ISBN: 0262331713

An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Computation of Multivariate Normal and t Probabilities

Computation of Multivariate Normal and t Probabilities
Author: Alan Genz
Publisher: Springer Science & Business Media
Total Pages: 130
Release: 2009-07-09
Genre: Computers
ISBN: 3642016898

Multivariate normal and t probabilities are needed for statistical inference in many applications. Modern statistical computation packages provide functions for the computation of these probabilities for problems with one or two variables. This book describes recently developed methods for accurate and efficient computation of the required probability values for problems with two or more variables. The book discusses methods for specialized problems as well as methods for general problems. The book includes examples that illustrate the probability computations for a variety of applications.

Lectures on Stochastic Programming

Lectures on Stochastic Programming
Author: Alexander Shapiro
Publisher: SIAM
Total Pages: 512
Release: 2014-07-09
Genre: Mathematics
ISBN: 1611973422

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available.? In?Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.?

Logistics Transportation Systems

Logistics Transportation Systems
Author: MD Sarder
Publisher: Elsevier
Total Pages: 455
Release: 2020-10-17
Genre: Law
ISBN: 0128162872

Logistics Transportation Systems compiles multiple topics on transportation logistics systems from both qualitative and quantitative perspectives, providing detailed examples of real-world logistics workflows. It explores the key concepts and problem-solving techniques required by researchers and logistics professionals to effectively manage the continued expansion of logistics transportation systems, which is expected to reach an estimated 25 billion tons in the United States alone by 2045. This book provides an ample understanding of logistics transportation systems, including basic concepts, in-depth modeling analysis, and network analysis for researchers and practitioners. In addition, it covers policy issues related to transportation logistics, such as security, rules and regulations, and emerging issues including reshoring. This book is an ideal guide for academic researchers and both undergraduate and graduate students in transportation modeling, supply chains, planning, and systems. It is also useful to transportation practitioners involved in planning, feasibility studies, consultation and policy for transportation systems, logistics, and infrastructure. - Provides real-world examples of logistics systems solutions for multiple transportation modes, including seaports, rail, barge, road, pipelines, and airports - Covers a wide range of business aspects, including customer service, cost, and decision analysis - Features key-term definitions, concept overviews, discussions, and analytical problem-solving

Confronting Climate Uncertainty in Water Resources Planning and Project Design

Confronting Climate Uncertainty in Water Resources Planning and Project Design
Author: Patrick A. Ray
Publisher: World Bank Publications
Total Pages: 149
Release: 2015-08-20
Genre: Business & Economics
ISBN: 1464804788

Confronting Climate Uncertainty in Water Resources Planning and Project Design describes an approach to facing two fundamental and unavoidable issues brought about by climate change uncertainty in water resources planning and project design. The first is a risk assessment problem. The second relates to risk management. This book provides background on the risks relevant in water systems planning, the different approaches to scenario definition in water system planning, and an introduction to the decision-scaling methodology upon which the decision tree is based. The decision tree is described as a scientifically defensible, repeatable, direct and clear method for demonstrating the robustness of a project to climate change. While applicable to all water resources projects, it allocates effort to projects in a way that is consistent with their potential sensitivity to climate risk. The process was designed to be hierarchical, with different stages or phases of analysis triggered based on the findings of the previous phase. An application example is provided followed by a descriptions of some of the tools available for decision making under uncertainty and methods available for climate risk management. The tool was designed for the World Bank but can be applicable in other scenarios where similar challenges arise.

Sensitivity Analysis in Practice

Sensitivity Analysis in Practice
Author: Andrea Saltelli
Publisher: John Wiley & Sons
Total Pages: 232
Release: 2004-07-16
Genre: Mathematics
ISBN: 047087094X

Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.