A Handbook of Statistical Analyses using R, Third Edition

A Handbook of Statistical Analyses using R, Third Edition
Author: Torsten Hothorn
Publisher: CRC Press
Total Pages: 454
Release: 2014-06-25
Genre: Mathematics
ISBN: 1482204584

Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.

A Handbook of Statistical Analyses Using R, Second Edition

A Handbook of Statistical Analyses Using R, Second Edition
Author: Torsten Hothorn
Publisher: Chapman and Hall/CRC
Total Pages: 376
Release: 2009-07-20
Genre: Mathematics
ISBN: 9781420079333

A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.

A Handbook of Statistical Analyses Using S-PLUS

A Handbook of Statistical Analyses Using S-PLUS
Author: Brian S. Everitt
Publisher: CRC Press
Total Pages: 260
Release: 2019-05-07
Genre: Computers
ISBN: 9781420057492

Since the first edition of this book was published, S-PLUS has evolved markedly with new methods of analysis, new graphical procedures, and a convenient graphical user interface (GUI). Today, S-PLUS is the statistical software of choice for many applied researchers in disciplines ranging from finance to medicine. Combining the command line languag

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications
Author: Ken Yale
Publisher: Elsevier
Total Pages: 824
Release: 2017-11-09
Genre: Mathematics
ISBN: 0124166458

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Handbook of Statistical Analyses Using Stata

Handbook of Statistical Analyses Using Stata
Author: Brian S. Everitt
Publisher: CRC Press
Total Pages: 354
Release: 2006-11-15
Genre: Mathematics
ISBN: 1466580577

With each new release of Stata, a comprehensive resource is needed to highlight the improvements as well as discuss the fundamentals of the software. Fulfilling this need, AHandbook of Statistical Analyses Using Stata, Fourth Edition has been fully updated to provide an introduction to Stata version 9. This edition covers many

Introductory Statistics with R

Introductory Statistics with R
Author: Peter Dalgaard
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2008-06-27
Genre: Mathematics
ISBN: 0387790543

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Modern Statistics with R

Modern Statistics with R
Author: Måns Thulin
Publisher:
Total Pages: 0
Release: 2024
Genre: Mathematics
ISBN: 9781032497457

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics

Using R and RStudio for Data Management, Statistical Analysis, and Graphics
Author: Nicholas J. Horton
Publisher: CRC Press
Total Pages: 280
Release: 2015-03-10
Genre: Mathematics
ISBN: 1482237377

This book covers the aspects of R most often used by statistical analysts. Incorporating the use of RStudio and the latest R packages, this second edition offers new chapters on simulation, special topics, and case studies. It reorganizes and enhances the chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots. It also provides a detailed discussion of the philosophy and use of the knitr and markdown packages for R.

The R Book

The R Book
Author: Michael J. Crawley
Publisher: John Wiley & Sons
Total Pages: 953
Release: 2007-06-13
Genre: Mathematics
ISBN: 9780470515068

The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.

A Handbook of Statistical Analyses Using R, Second Edition

A Handbook of Statistical Analyses Using R, Second Edition
Author: Torsten Hothorn
Publisher: CRC Press
Total Pages: 383
Release: 2009-07-20
Genre: Mathematics
ISBN: 1420079336

A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.