A Gentle Introduction To Knots Links And Braids
Download A Gentle Introduction To Knots Links And Braids full books in PDF, epub, and Kindle. Read online free A Gentle Introduction To Knots Links And Braids ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ruben Aldrovandi |
Publisher | : World Scientific |
Total Pages | : 214 |
Release | : 2021-10-14 |
Genre | : Science |
ISBN | : 9811248508 |
The interface between Physics and Mathematics has been increasingly spotlighted by the discovery of algebraic, geometric, and topological properties in physical phenomena. A profound example is the relation of noncommutative geometry, arising from algebras in mathematics, to the so-called quantum groups in the physical viewpoint. Two apparently unrelated puzzles — the solubility of some lattice models in statistical mechanics and the integrability of differential equations for special problems — are encoded in a common algebraic condition, the Yang-Baxter equation. This backdrop motivates the subject of this book, which reveals Knot Theory as a highly intuitive formalism that is intimately connected to Quantum Field Theory and serves as a basis to String Theory.This book presents a didactic approach to knots, braids, links, and polynomial invariants which are powerful and developing techniques that rise up to the challenges in String Theory, Quantum Field Theory, and Statistical Physics. It introduces readers to Knot Theory and its applications through formal and practical (computational) methods, with clarity, completeness, and minimal demand of requisite knowledge on the subject. As a result, advanced undergraduates in Physics, Mathematics, or Engineering, will find this book an excellent and self-contained guide to the algebraic, geometric, and topological tools for advanced studies in theoretical physics and mathematics.
Author | : Ruben Aldrovandi |
Publisher | : World Scientific Publishing Company |
Total Pages | : 216 |
Release | : 2021-10-14 |
Genre | : Science |
ISBN | : 9789811249327 |
The interface between Physics and Mathematics has been increasingly spotlighted by the discovery of algebraic, geometric, and topological properties in physical phenomena. A profound example is the relation of noncommutative geometry, arising from algebras in mathematics, to the so-called quantum groups in the physical viewpoint. Two apparently unrelated puzzles - the solubility of some lattice models in statistical mechanics and the integrability of differential equations for special problems - are encoded in a common algebraic condition, the Yang-Baxter equation. This backdrop motivates the subject of this book, which reveals Knot Theory as a highly intuitive formalism that is intimately connected to Quantum Field Theory and serves as a basis to String Theory. This book presents a didactic approach to knots, braids, links, and polynomial invariants which are powerful and developing techniques that rise up to the challenges in String Theory, Quantum Field Theory, and Statistical Physics. It introduces readers to Knot Theory and its applications through formal and practical (computational) methods, with clarity, completeness, and minimal demand of requisite knowledge on the subject. As a result, advanced undergraduates in Physics, Mathematics, or Engineering, will find this book an excellent and self-contained guide to the algebraic, geometric, and topological tools for advanced studies in theoretical physics and mathematics.
Author | : Ruben Aldrovandi |
Publisher | : |
Total Pages | : 214 |
Release | : 2021 |
Genre | : Braid theory |
ISBN | : 9789811248498 |
Author | : Avi Wigderson |
Publisher | : Princeton University Press |
Total Pages | : 434 |
Release | : 2019-10-29 |
Genre | : Computers |
ISBN | : 0691189137 |
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Author | : Lee Paul Neuwirth |
Publisher | : Princeton University Press |
Total Pages | : 352 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 140088151X |
There is a sympathy of ideas among the fields of knot theory, infinite discrete group theory, and the topology of 3-manifolds. This book contains fifteen papers in which new results are proved in all three of these fields. These papers are dedicated to the memory of Ralph H. Fox, one of the world's leading topologists, by colleagues, former students, and friends. In knot theory, papers have been contributed by Goldsmith, Levine, Lomonaco, Perko, Trotter, and Whitten. Of these several are devoted to the study of branched covering spaces over knots and links, while others utilize the braid groups of Artin. Cossey and Smythe, Stallings, and Strasser address themselves to group theory. In his contribution Stallings describes the calculation of the groups In/In+1 where I is the augmentation ideal in a group ring RG. As a consequence, one has for each k an example of a k-generator l-relator group with no free homomorphs. In the third part, papers by Birman, Cappell, Milnor, Montesinos, Papakyriakopoulos, and Shalen comprise the treatment of 3-manifolds. Milnor gives, besides important new results, an exposition of certain aspects of our current knowledge regarding the 3- dimensional Brieskorn manifolds.
Author | : Kunio Murasugi |
Publisher | : Springer Science & Business Media |
Total Pages | : 348 |
Release | : 2009-12-29 |
Genre | : Mathematics |
ISBN | : 0817647198 |
This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.
Author | : Louis H. Kauffman |
Publisher | : Courier Corporation |
Total Pages | : 274 |
Release | : 2006-01-01 |
Genre | : Mathematics |
ISBN | : 048645052X |
This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.
Author | : Christine Kindberg |
Publisher | : Bellflower Press |
Total Pages | : 262 |
Release | : 2019-07-10 |
Genre | : Young Adult Fiction |
ISBN | : 1797761358 |
Home is where your people are. But who are your people? Adelaide has lived her whole life in rural Ethiopia as the white American daughter of an anthropologist. Then her family moves to South Carolina, in 1964. Adelaide vows to find her way back to Ethiopia, marry Maicaah, and become part of the village for real. But until she turns eighteen, Adelaide must adjust to this strange, white place that everyone tells her is home. Then Adelaide becomes friends with the five African-American students who sued for admission into the white high school. Even as she navigates her family's expectations and her mother's depression, Adelaide starts to enjoy her new friendships, the chance to learn new things, and the time she spends with a blond football player. Life in Greenville becomes interesting, and home becomes a much more complex equation. Adelaide must finally choose where she belongs: the Ethiopian village where she grew up, to which she promised to return? Or this place where she's become part of something bigger than herself? "The Means That Make Us Strangers is a beautifully written coming-of-age story that will satisfy experienced readers as well as younger ones. Christine Kindberg treats all of these characters graciously and with deep generosity. The result is a gorgeous meditation on growing up, experiencing love, and finding home.” —Pinckney Benedict, three-time winner of the Pushcart Prize, author of Dogs of God and Miracle Boy and Other Stories "Christine Kindberg's fiction explores the complexity of identity, love, and faith with extraordinary intimacy and skill. Her bracing prose draws you into the lives of characters who live and breathe upon the page." —Naeem Murr, author of The Perfect Man (long-listed for the Man Booker Prize)
Author | : Dale Rolfsen |
Publisher | : American Mathematical Soc. |
Total Pages | : 458 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821834363 |
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""
Author | : W.B.Raymond Lickorish |
Publisher | : Springer Science & Business Media |
Total Pages | : 213 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 146120691X |
A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.