A General Introduction To Data Analytics
Download A General Introduction To Data Analytics full books in PDF, epub, and Kindle. Read online free A General Introduction To Data Analytics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : João Moreira |
Publisher | : John Wiley & Sons |
Total Pages | : 352 |
Release | : 2018-07-18 |
Genre | : Mathematics |
ISBN | : 1119296242 |
A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.
Author | : Rafael A. Irizarry |
Publisher | : CRC Press |
Total Pages | : 836 |
Release | : 2019-11-20 |
Genre | : Mathematics |
ISBN | : 1000708039 |
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Author | : Foster Provost |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 506 |
Release | : 2013-07-27 |
Genre | : Computers |
ISBN | : 144937428X |
Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
Author | : João Moreira |
Publisher | : John Wiley & Sons |
Total Pages | : 356 |
Release | : 2018-06-25 |
Genre | : Mathematics |
ISBN | : 1119296269 |
A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.
Author | : Chirag Shah |
Publisher | : Cambridge University Press |
Total Pages | : 459 |
Release | : 2020-04-02 |
Genre | : Business & Economics |
ISBN | : 1108472443 |
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
Author | : John W. Foreman |
Publisher | : John Wiley & Sons |
Total Pages | : 432 |
Release | : 2013-10-31 |
Genre | : Business & Economics |
ISBN | : 1118839862 |
Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Author | : Tiffany Bergin |
Publisher | : SAGE |
Total Pages | : 363 |
Release | : 2018-10-15 |
Genre | : Social Science |
ISBN | : 1526452316 |
Covering the general process of data analysis to finding, collecting, organizing, and presenting data, this book offers a complete introduction to the fundamentals of data analysis. Using real-world case studies as illustrations, it helps readers understand theories behind and develop techniques for conducting quantitative, qualitative, and mixed methods data analysis. With an easy-to-follow organization and clear, jargon-free language, it helps readers not only become proficient data analysts, but also develop the critical thinking skills necessary to assess analyses presented by others in both academic research and the popular media. It includes advice on: - Data analysis frameworks - Validity and credibility of data - Sampling techniques - Data management - The big data phenomenon - Data visualisation - Effective data communication Whether you are new to data analysis or looking for a quick-reference guide to key principles of the process, this book will help you uncover nuances, complexities, patterns, and relationships among all types of data.
Author | : Michael Milton |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 486 |
Release | : 2009-07-24 |
Genre | : Business & Economics |
ISBN | : 0596153937 |
A guide for data managers and analyzers. It shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others.
Author | : Luis Tenorio |
Publisher | : SIAM |
Total Pages | : 275 |
Release | : 2017-07-06 |
Genre | : Mathematics |
ISBN | : 1611974917 |
Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.
Author | : Vibrant Publishers |
Publisher | : Vibrant Publishers |
Total Pages | : 170 |
Release | : 2024-02-29 |
Genre | : Business & Economics |
ISBN | : 1636511198 |
Upon reading this book, you will get: A fundamental comprehension of data analytics, including its types An understanding of data analytics processes, software tools, and a range of analytics methodologies A comprehension of what daily tasks and procedures the data analysts follow An investigation into the vast field of big data analytics, covering its possibilities and challenges An understanding of the existing legal frameworks, as well as ethical and privacy issues in data analytics Application-based learning using a variety of real-world case studies From raw data to actionable insights - journey through the essentials of data analytics. Data Analytics Essentials You Always Wanted To Know is an approachable and captivating guide to understand the complicated world of data Data analytics is becoming increasingly important in today's data-driven society, and so has the demand for data analysts. Data Analytics Essentials You Always Wanted to Know (Data Analytics Essentials) is a comprehensive yet succinct manual, perfect for you if you are trying to understand the fundamentals of data analytics. It gives a concise introduction to data analytics and its current applicability. This book is a great tool for professionals switching to a career in data analytics and for students who want to learn the basics of data analytics. It will give you a strong foundation by explaining everything in an easy-to-understand language. Data Analytics Essentials goes beyond a theoretical manual and contains real-world case studies and fun facts to help you enhance your knowledge. The chapter summaries and self- assessment tests along with every chapter will help you test yourself as you move from one concept to the next.