Friendly Introduction to Number Theory, a (Classic Version)

Friendly Introduction to Number Theory, a (Classic Version)
Author: Joseph Silverman
Publisher:
Total Pages: 0
Release: 2017-02-13
Genre: Number theory
ISBN: 9780134689463

For one-semester undergraduate courses in Elementary Number Theory This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. A Friendly Introduction to Number Theory, 4th Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet-number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results.

Elementary Number Theory

Elementary Number Theory
Author: Gareth A. Jones
Publisher: Springer Science & Business Media
Total Pages: 305
Release: 2012-12-06
Genre: Mathematics
ISBN: 144710613X

An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

Problem-Solving and Selected Topics in Number Theory

Problem-Solving and Selected Topics in Number Theory
Author: Michael Th. Rassias
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2010-12-02
Genre: Mathematics
ISBN: 1441904948

The book provides a self-contained introduction to classical Number Theory. All the proofs of the individual theorems and the solutions of the exercises are being presented step by step. Some historical remarks are also presented. The book will be directed to advanced undergraduate, beginning graduate students as well as to students who prepare for mathematical competitions (ex. Mathematical Olympiads and Putnam Mathematical competition).

A Friendly Introduction to Number Theory

A Friendly Introduction to Number Theory
Author: Joseph H. Silverman
Publisher: Prentice Hall
Total Pages: 456
Release: 2006
Genre: Mathematics
ISBN:

Starting with nothing more than basic high school algebra, this volume leads readers gradually from basic algebra to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers.Features an informal writing style and includes many numerical examples. Emphasizes the methods used for proving theorems rather than specific results. Includes a new chapter on big-Oh notation and how it is used to describe the growth rate of number theoretic functions and to describe the complexity of algorithms. Provides a new chapter that introduces the theory of continued fractions. Includes a new chapter on “Continued Fractions, Square Roots and Pell’s Equation.” Contains additional historical material, including material on Pell’s equation and the Chinese Remainder Theorem.A useful reference for mathematics teachers.

Computational Number Theory and Modern Cryptography

Computational Number Theory and Modern Cryptography
Author: Song Y. Yan
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2013-01-29
Genre: Computers
ISBN: 1118188586

The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.

Number Theory

Number Theory
Author: George E. Andrews
Publisher: Courier Corporation
Total Pages: 292
Release: 2012-04-30
Genre: Mathematics
ISBN: 0486135101

Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.

Fundamentals of Number Theory

Fundamentals of Number Theory
Author: William J. LeVeque
Publisher: Courier Corporation
Total Pages: 292
Release: 2014-01-05
Genre: Mathematics
ISBN: 0486141500

This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

Number Theory and Its History

Number Theory and Its History
Author: Oystein Ore
Publisher: Courier Corporation
Total Pages: 404
Release: 2012-07-06
Genre: Mathematics
ISBN: 0486136434

Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.

A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
Total Pages: 382
Release: 2015
Genre: Computers
ISBN: 1942341075

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.