A First Look At Perturbation Theory
Download A First Look At Perturbation Theory full books in PDF, epub, and Kindle. Read online free A First Look At Perturbation Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James G. Simmonds |
Publisher | : Courier Corporation |
Total Pages | : 162 |
Release | : 1998-01-01 |
Genre | : Mathematics |
ISBN | : 0486675513 |
Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.
Author | : James G. Simmonds |
Publisher | : Courier Corporation |
Total Pages | : 162 |
Release | : 2013-07-04 |
Genre | : Mathematics |
ISBN | : 0486315584 |
Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.
Author | : Tosio Kato |
Publisher | : Springer Science & Business Media |
Total Pages | : 610 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 3662126788 |
Author | : Mark H. Holmes |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461253470 |
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.
Author | : Richard Ernest Bellman |
Publisher | : Courier Corporation |
Total Pages | : 146 |
Release | : 2003-01-01 |
Genre | : Science |
ISBN | : 9780486432588 |
Graduate students receive a stimulating introduction to analytical approximation techniques for solving differential equations in this text, which introduces scientifically significant problems and indicates useful solutions. 1966 edition.
Author | : Giampaolo Cicogna |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2003-07-01 |
Genre | : Science |
ISBN | : 354048874X |
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to a equations increasingly popular applied of the of the book Olver This by variety problems (following appearance [2621). with is and deals of nature theory deeply geometrical symmetries general (pro vided that described i.e. in this context there is are vector no they by fields), to limit attention to linear reason symmetries. In this look the basic tools of i.e. normal book we at perturbation theory, introduced Poincar6 about and their inter a forms (first by century ago) study action with with no limitation to linear ones. We focus on the most symmetries, basic fixed the and i.e. a setting, systems having point (at origin) perturbative around thus is local.
Author | : E. J. Hinch |
Publisher | : Cambridge University Press |
Total Pages | : 178 |
Release | : 1991-10-25 |
Genre | : Mathematics |
ISBN | : 9780521378970 |
A textbook presenting the theory and underlying techniques of perturbation methods in a manner suitable for senior undergraduates from a broad range of disciplines.
Author | : Norman Bleistein |
Publisher | : Courier Corporation |
Total Pages | : 453 |
Release | : 1986-01-01 |
Genre | : Mathematics |
ISBN | : 0486650820 |
Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Author | : James G. Simmonds |
Publisher | : Springer Science & Business Media |
Total Pages | : 124 |
Release | : 2012-10-31 |
Genre | : Mathematics |
ISBN | : 1441985220 |
In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.
Author | : Carl M. Bender |
Publisher | : Springer Science & Business Media |
Total Pages | : 605 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.