A First Course On Representation Theory And Linear Lie Groups
Download A First Course On Representation Theory And Linear Lie Groups full books in PDF, epub, and Kindle. Read online free A First Course On Representation Theory And Linear Lie Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : S C Bagchi |
Publisher | : Universities Press |
Total Pages | : 110 |
Release | : 2000 |
Genre | : Lie groups |
ISBN | : 9788173712845 |
This book is intended to serve as a textbook for a one-semester course for M.Sc/M.Phil. Students at Indian universities. Students of theoretical physics will also find this exposition useful. The general theory of Lie groups appears formidable to an M.Sc./M.Phil. student.
Author | : William Fulton |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 1991 |
Genre | : Mathematics |
ISBN | : 9780387974958 |
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Author | : J.E. Humphreys |
Publisher | : Springer Science & Business Media |
Total Pages | : 189 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461263980 |
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Author | : Pavel I. Etingof |
Publisher | : American Mathematical Soc. |
Total Pages | : 240 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 0821853511 |
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Author | : Brian Hall |
Publisher | : Springer |
Total Pages | : 452 |
Release | : 2015-05-11 |
Genre | : Mathematics |
ISBN | : 3319134671 |
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Author | : Brian C. Hall |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2003-08-07 |
Genre | : Mathematics |
ISBN | : 9780387401225 |
This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.
Author | : Alexander A. Kirillov |
Publisher | : Cambridge University Press |
Total Pages | : 237 |
Release | : 2008-07-31 |
Genre | : Mathematics |
ISBN | : 0521889693 |
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author | : Wulf Rossmann |
Publisher | : Oxford University Press, USA |
Total Pages | : 290 |
Release | : 2006 |
Genre | : Business & Economics |
ISBN | : 9780199202515 |
This book is an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analyzed in detail, first with elementary matrix methods, then with the help of the structural tools typical of the theory of semisimple groups, such as Cartan subgroups, root, weights and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.
Author | : Steven A. Gaal |
Publisher | : Springer Science & Business Media |
Total Pages | : 701 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642807410 |
In an age when more and more items. are made to be quickly disposable or soon become obsolete due to either progress or other man caused reasons it seems almost anachronistic to write a book in the classical sense. A mathematics book becomes an indespensible companion, if it is worthy of such a relation, not by being rapidly read from cover to cover but by frequent browsing, consultation and other occasional use. While trying to create such a work I tried not to be encyclopedic but rather select only those parts of each chosen topic which I could present clearly and accurately in a formulation which is likely to last. The material I chose is all mathematics which is interesting and important both for the mathematician and to a large extent also for the mathematical physicist. I regret that at present I could not give a similar account on direct integrals and the representation theory of certain classes of Lie groups. I carefully kept the level of presentation throughout the whole book as uniform as possible. Certain introductory sections are kept shorter and are perhaps slightly more detailed in order to help the newcomer prog ress with it at the same rate as the more experienced person is going to proceed with his study of the details.
Author | : K. Erdmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2006-09-28 |
Genre | : Mathematics |
ISBN | : 1846284902 |
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.