A First Course in Rational Continuum Mechanics

A First Course in Rational Continuum Mechanics
Author: C. Truesdell
Publisher: Elsevier
Total Pages: 304
Release: 2016-06-03
Genre: Technology & Engineering
ISBN: 1483220486

A First Course in Rational Continuum Mechanics, Volume 1: General Concepts describes general concepts in rational continuum mechanics and covers topics ranging from bodies and forces to motions and energies, kinematics, and the stress tensor. Constitutive relations are also discussed, and some definitions and theorems of algebra, geometry, and calculus are included. Exercises and their solutions are given as well. Comprised of four chapters, this volume begins with an introduction to rational mechanics by focusing on the mathematical concepts of bodies, forces, motions, and energies. Systems that provide possible universes for mechanics are described. The next chapter explores kinematics, with emphasis on bodies, placements, and motions as well as other relevant concepts like local deformation and homogeneous transplacement. The book also considers the stress tensor and Cauchy's fundamental theorem before concluding with a discussion on constitutive relations. This monograph is designed for students taking a course in mathematics or physics.

Continuum Mechanics and Linear Elasticity

Continuum Mechanics and Linear Elasticity
Author: Ciprian D. Coman
Publisher: Springer Nature
Total Pages: 528
Release: 2019-11-02
Genre: Technology & Engineering
ISBN: 9402417710

This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).

The Rational Spirit in Modern Continuum Mechanics

The Rational Spirit in Modern Continuum Mechanics
Author: Chi-Sing Man
Publisher: Springer Science & Business Media
Total Pages: 828
Release: 2006-01-19
Genre: Science
ISBN: 1402023081

Through his voluminous and in?uential writings, editorial activities, organi- tional leadership, intellectual acumen, and strong sense of history, Clifford - brose Truesdell III (1919–2000) was the main architect for the renaissance of - tional continuum mechanics since the middle of the twentieth century. The present collection of 42 essays and research papers pays tribute to this man of mathematics, science, and natural philosophy as well as to his legacy. The ?rst ?ve essays by B. D. Coleman, E. Giusti, W. Noll, J. Serrin, and D. Speiser were texts of addresses given by their authors at the Meeting in memory of Clifford Truesdell, which was held in Pisa in November 2000. In these essays the reader will ?nd personal reminiscences of Clifford Truesdell the man and of some of his activities as scientist, author, editor, historian of exact sciences, and principal founding member of the Society for Natural Philosophy. The bulk of the collection comprises 37 research papers which bear witness to the Truesdellian legacy. These papers cover a wide range of topics; what ties them together is the rational spirit. Clifford Truesdell, in his address upon receipt of a Birkhoff Prize in 1978, put the essence of modern continuum mechanics succinctly as “conceptual analysis, analysis not in the sense of the technical term but in the root meaning: logical criticism, dissection, and creative scrutiny.

Thermodynamics of Materials with Memory

Thermodynamics of Materials with Memory
Author: Giovambattista Amendola
Publisher: Springer Science & Business Media
Total Pages: 576
Release: 2011-11-18
Genre: Mathematics
ISBN: 1461416922

This is a work in four parts, dealing with the mechanics and thermodynamics of materials with memory, including properties of the dynamical equations which describe their evolution in time under varying loads. The first part is an introduction to Continuum Mechanics with sections dealing with classical Fluid Mechanics and Elasticity, linear and non-linear. The second part is devoted to Continuum Thermodynamics, which is used to derive constitutive equations of materials with memory, including viscoelastic solids, fluids, heat conductors and some examples of non-simple materials. In part three, free energies for materials with linear memory constitutive relations are comprehensively explored. The new concept of a minimal state is also introduced. Formulae derived over the last decade for the minimum and related free energies are discussed in depth. Also, a new single integral free energy which is a functional of the minimal state is analyzed in detail. Finally, free energies for examples of non-simple materials are considered. In the final part, existence, uniqueness and stability results are presented for the integrodifferential equations describing the dynamical evolution of viscoelastic materials. A new approach to these topics, based on the use of minimal states rather than histories, is discussed in detail. There are also chapters on the controllability of thermoelastic systems with memory, the Saint-Venant problem for viscoelastic materials and on the theory of inverse problems.

Nonlinear Problems of Elasticity

Nonlinear Problems of Elasticity
Author: Stuart Antman
Publisher: Springer Science & Business Media
Total Pages: 762
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475741472

The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.

Non-Linear Theory of Elasticity

Non-Linear Theory of Elasticity
Author: A.I. Lurie
Publisher: Elsevier
Total Pages: 632
Release: 2012-12-02
Genre: Science
ISBN: 0444597239

This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.

An Introduction to the Mechanics of Fluids

An Introduction to the Mechanics of Fluids
Author: C. Truesdell
Publisher: Springer Science & Business Media
Total Pages: 286
Release: 2010-10-05
Genre: Technology & Engineering
ISBN: 0817648461

A compact, moderately general book which encompasses many fluid models of current interest...The book is written very clearly and contains a large number of exercises and their solutions. The level of mathematics is that commonly taught to undergraduates in mathematics departments.. —Mathematical Reviews The book should be useful for graduates and researchers not only in applied mathematics and mechanical engineering but also in advanced materials science and technology...Each public scientific library as well as hydrodynamics hand libraries should own this timeless book...Everyone who decides to buy this book can be sure to have bought a classic of science and the heritage of an outstanding scientist. —Silikáty All applied mathematicians, mechanical engineers, aerospace engineers, and engineering mechanics graduates and researchers will find the book an essential reading resource for fluids. —Simulation News Europe