A First Course in the Design of Experiments

A First Course in the Design of Experiments
Author: John H. Skillings
Publisher: CRC Press
Total Pages: 700
Release: 1999-11-24
Genre: Mathematics
ISBN: 9780849396717

Most texts on experimental design fall into one of two distinct categories. There are theoretical works with few applications and minimal discussion on design, and there are methods books with limited or no discussion of the underlying theory. Furthermore, most of these tend to either treat the analysis of each design separately with little attempt to unify procedures, or they will integrate the analysis for the designs into one general technique. A First Course in the Design of Experiments: A Linear Models Approach stands apart. It presents theory and methods, emphasizes both the design selection for an experiment and the analysis of data, and integrates the analysis for the various designs with the general theory for linear models. The authors begin with a general introduction then lead students through the theoretical results, the various design models, and the analytical concepts that will enable them to analyze virtually any design. Rife with examples and exercises, the text also encourages using computers to analyze data. The authors use the SAS software package throughout the book, but also demonstrate how any regression program can be used for analysis. With its balanced presentation of theory, methods, and applications and its highly readable style, A First Course in the Design of Experiments proves ideal as a text for a beginning graduate or upper-level undergraduate course in the design and analysis of experiments.

A First Course in Linear Models and Design of Experiments

A First Course in Linear Models and Design of Experiments
Author: N. R. Mohan Madhyastha
Publisher: Springer Nature
Total Pages: 230
Release: 2020-11-13
Genre: Mathematics
ISBN: 9811586594

This textbook presents the basic concepts of linear models, design and analysis of experiments. With the rigorous treatment of topics and provision of detailed proofs, this book aims at bridging the gap between basic and advanced topics of the subject. Initial chapters of the book explain linear estimation in linear models and testing of linear hypotheses, and the later chapters apply this theory to the analysis of specific models in designing statistical experiments. The book includes topics on the basic theory of linear models covering estimability, criteria for estimability, Gauss–Markov theorem, confidence interval estimation, linear hypotheses and likelihood ratio tests, the general theory of analysis of general block designs, complete and incomplete block designs, general row column designs with Latin square design and Youden square design as particular cases, symmetric factorial experiments, missing plot technique, analyses of covariance models, split plot and split block designs. Every chapter has examples to illustrate the theoretical results and exercises complementing the topics discussed. R codes are provided at the end of every chapter for at least one illustrative example from the chapter enabling readers to write similar codes for other examples and exercise.

Design of Experiments

Design of Experiments
Author: Max Morris
Publisher: CRC Press
Total Pages: 376
Release: 2010-07-27
Genre: Mathematics
ISBN: 1439894906

Offering deep insight into the connections between design choice and the resulting statistical analysis, Design of Experiments: An Introduction Based on Linear Models explores how experiments are designed using the language of linear statistical models. The book presents an organized framework for understanding the statistical aspects of experiment

A First Course in Design and Analysis of Experiments

A First Course in Design and Analysis of Experiments
Author: Gary W. Oehlert
Publisher: W. H. Freeman
Total Pages: 600
Release: 2000-01-19
Genre: Mathematics
ISBN: 9780716735106

Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.

Linear Algebra and Linear Models

Linear Algebra and Linear Models
Author: Ravindra B. Bapat
Publisher: Springer Science & Business Media
Total Pages: 145
Release: 2008-01-18
Genre: Mathematics
ISBN: 038722601X

This book provides a rigorous introduction to the basic aspects of the theory of linear estimation and hypothesis testing, covering the necessary prerequisites in matrices, multivariate normal distribution and distributions of quadratic forms along the way. It will appeal to advanced undergraduate and first-year graduate students, research mathematicians and statisticians.

A First Course in the Design of Experiments

A First Course in the Design of Experiments
Author: John H. Skillings
Publisher: Routledge
Total Pages: 700
Release: 2018-05-08
Genre: Mathematics
ISBN: 1351469967

Most texts on experimental design fall into one of two distinct categories. There are theoretical works with few applications and minimal discussion on design, and there are methods books with limited or no discussion of the underlying theory. Furthermore, most of these tend to either treat the analysis of each design separately with little attempt to unify procedures, or they will integrate the analysis for the designs into one general technique. A First Course in the Design of Experiments: A Linear Models Approach stands apart. It presents theory and methods, emphasizes both the design selection for an experiment and the analysis of data, and integrates the analysis for the various designs with the general theory for linear models. The authors begin with a general introduction then lead students through the theoretical results, the various design models, and the analytical concepts that will enable them to analyze virtually any design. Rife with examples and exercises, the text also encourages using computers to analyze data. The authors use the SAS software package throughout the book, but also demonstrate how any regression program can be used for analysis. With its balanced presentation of theory, methods, and applications and its highly readable style, A First Course in the Design of Experiments proves ideal as a text for a beginning graduate or upper-level undergraduate course in the design and analysis of experiments.

Design of Experiments for Generalized Linear Models

Design of Experiments for Generalized Linear Models
Author: Kenneth G. Russell
Publisher: CRC Press
Total Pages: 260
Release: 2018-12-14
Genre: Mathematics
ISBN: 0429614411

Generalized Linear Models (GLMs) allow many statistical analyses to be extended to important statistical distributions other than the Normal distribution. While numerous books exist on how to analyse data using a GLM, little information is available on how to collect the data that are to be analysed in this way. This is the first book focusing specifically on the design of experiments for GLMs. Much of the research literature on this topic is at a high mathematical level, and without any information on computation. This book explains the motivation behind various techniques, reduces the difficulty of the mathematics, or moves it to one side if it cannot be avoided, and gives examples of how to write and run computer programs using R. Features The generalisation of the linear model to GLMs Background mathematics, and the use of constrained optimisation in R Coverage of the theory behind the optimality of a design Individual chapters on designs for data that have Binomial or Poisson distributions Bayesian experimental design An online resource contains R programs used in the book This book is aimed at readers who have done elementary differentiation and understand minimal matrix algebra, and have familiarity with R. It equips professional statisticians to read the research literature. Nonstatisticians will be able to design their own experiments by following the examples and using the programs provided.

Handbook of Design and Analysis of Experiments

Handbook of Design and Analysis of Experiments
Author: Angela Dean
Publisher: CRC Press
Total Pages: 946
Release: 2015-06-26
Genre: Mathematics
ISBN: 146650434X

This carefully edited collection synthesizes the state of the art in the theory and applications of designed experiments and their analyses. It provides a detailed overview of the tools required for the optimal design of experiments and their analyses. The handbook covers many recent advances in the field, including designs for nonlinear models and algorithms applicable to a wide variety of design problems. It also explores the extensive use of experimental designs in marketing, the pharmaceutical industry, engineering and other areas.

Linear Models in Statistics

Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
Total Pages: 690
Release: 2008-01-07
Genre: Mathematics
ISBN: 0470192607

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.