A Discourse Concerning Algebra

A Discourse Concerning Algebra
Author: Jacqueline A. Stedall
Publisher: OUP Oxford
Total Pages: 306
Release: 2003-01-16
Genre: Mathematics
ISBN: 0191545759

For historians of mathematics and those interested in the history of science, 'A Discourse Concerning Algebra' provides an new and readable account of the rise of algebra in England from the Medieval period to the later years of the 17th century. Including new research, this is the most detailed study to date of early modern English algebra, which builds on work published in 1685 by John Wallis (Savilian Professor of Geometry at Oxford) on the history of algebra. Stedall's book follows the reception and dissemination of important algebraic ideas and methods from continental Europe (especially those of Viéte) and the consequent revolution in the state of English mathematics in the 17th century. The text emphasises the contribution of Wallis, but substantial reference is also provided to other important mathematicans such as Harriot, Oughtred, Pell and Brouncker.

A Discourse Concerning Algebra

A Discourse Concerning Algebra
Author: Jacqueline A. Stedall
Publisher: Mathematics
Total Pages: 307
Release: 2002
Genre: Mathematics
ISBN: 0198524951

A Discourse Concerning Algebra, provides a new and readable account of the rise of algebra in England from the Medieval period to the later years of the 17th Century.Stedall's book follows the reception and dissemination of important algebraic ideas and methods from continental Europe and the consequent revolution in the state of English mathematics in the 17th century.

The Arithmetic of Infinitesimals

The Arithmetic of Infinitesimals
Author: John Wallis
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475743122

John Wallis (1616-1703) was the most influential English mathematician prior to Newton. He published his most famous work, Arithmetica Infinitorum, in Latin in 1656. This book studied the quadrature of curves and systematised the analysis of Descartes and Cavelieri. Upon publication, this text immediately became the standard book on the subject and was frequently referred to by subsequent writers. This will be the first English translation of this text ever to be published.

An Introduction to Algebraic Structures

An Introduction to Algebraic Structures
Author: Joseph Landin
Publisher: Courier Corporation
Total Pages: 275
Release: 2012-08-29
Genre: Mathematics
ISBN: 0486150410

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.

Mathematical Discourse

Mathematical Discourse
Author: Kay O'Halloran
Publisher: A&C Black
Total Pages: 239
Release: 2008-11-01
Genre: Language Arts & Disciplines
ISBN: 1847064213

An examination of mathematical discourse from the perspective of Michael Halliday's social semiotic theory.

Greek Mathematical Thought and the Origin of Algebra

Greek Mathematical Thought and the Origin of Algebra
Author: Jacob Klein
Publisher: Courier Corporation
Total Pages: 246
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486319814

Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.

The Nature and Role of Algebra in the K-14 Curriculum

The Nature and Role of Algebra in the K-14 Curriculum
Author: Center for Science, Mathematics, and Engineering Education
Publisher: National Academies Press
Total Pages: 206
Release: 1998-10-07
Genre: Education
ISBN: 0309522455

With the 1989 release of Everybody Counts by the Mathematical Sciences Education Board (MSEB) of the National Research Council and the Curriculum and Evaluation Standards for School Mathematics by the National Council of Teachers of Mathematics (NCTM), the "standards movement" in K-12 education was launched. Since that time, the MSEB and the NCTM have remained committed to deepening the public debate, discourse, and understanding of the principles and implications of standards-based reform. One of the main tenets in the NCTM Standards is commitment to providing high-quality mathematical experiences to all students. Another feature of the Standards is emphasis on development of specific mathematical topics across the grades. In particular, the Standards emphasize the importance of algebraic thinking as an essential strand in the elementary school curriculum. Issues related to school algebra are pivotal in many ways. Traditionally, algebra in high school or earlier has been considered a gatekeeper, critical to participation in postsecondary education, especially for minority students. Yet, as traditionally taught, first-year algebra courses have been characterized as an unmitigated disaster for most students. There have been many shifts in the algebra curriculum in schools within recent years. Some of these have been successful first steps in increasing enrollment in algebra and in broadening the scope of the algebra curriculum. Others have compounded existing problems. Algebra is not yet conceived of as a K-14 subject. Issues of opportunity and equity persist. Because there is no one answer to the dilemma of how to deal with algebra, making progress requires sustained dialogue, experimentation, reflection, and communication of ideas and practices at both the local and national levels. As an initial step in moving from national-level dialogue and speculations to concerted local and state level work on the role of algebra in the curriculum, the MSEB and the NCTM co-sponsored a national symposium, "The Nature and Role of Algebra in the K-14 Curriculum," on May 27 and 28, 1997, at the National Academy of Sciences in Washington, D.C.

Perspectives on School Algebra

Perspectives on School Algebra
Author: Rosamund Sutherland
Publisher: Springer Science & Business Media
Total Pages: 277
Release: 2006-02-16
Genre: Education
ISBN: 0306472236

This book confronts the issue of how young people can find a way into the world of algebra. It represents multiple perspectives which include an analysis of situations in which algebra is an efficient problem-solving tool, the use of computer-based technologies, and a consideration of the historical evolution of algebra. The book emphasizes the situated nature of algebraic activity as opposed to being concerned with identifying students' conceptions in isolation from problem-solving activity.