A Course On Integral Equations With Numerical Analysis
Download A Course On Integral Equations With Numerical Analysis full books in PDF, epub, and Kindle. Read online free A Course On Integral Equations With Numerical Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : A. C. Pipkin |
Publisher | : Springer Science & Business Media |
Total Pages | : 302 |
Release | : 1991-09-12 |
Genre | : Mathematics |
ISBN | : 9780387975573 |
This book is based on a one semester course for graduate students in physical sciences and applied mathemat- ics. Not detailed mathematical background is needed but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is problem-solving rather than theorem proving, the main requirement is that the student should be willing to work out a large number of specific examples. The course is divided about equally into three parts, where the first part is mostly theoretical and the remaining two parts emphasize on problem solving.
Author | : A. Iserles |
Publisher | : Cambridge University Press |
Total Pages | : 481 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0521734908 |
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Author | : Paul Sacks |
Publisher | : Academic Press |
Total Pages | : 322 |
Release | : 2017-05-16 |
Genre | : Mathematics |
ISBN | : 0128114576 |
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics
Author | : A. C. Pipkin |
Publisher | : |
Total Pages | : 296 |
Release | : 1991 |
Genre | : Integral equations |
ISBN | : |
Author | : Wolfgang Hackbusch |
Publisher | : Birkhäuser |
Total Pages | : 377 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034892152 |
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Author | : Peter Linz |
Publisher | : SIAM |
Total Pages | : 240 |
Release | : 1985-01-01 |
Genre | : Mathematics |
ISBN | : 9781611970852 |
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Author | : Tofigh Allahviranloo |
Publisher | : Springer Nature |
Total Pages | : 222 |
Release | : 2021-10-30 |
Genre | : Technology & Engineering |
ISBN | : 3030853500 |
This book suggests that the numerical analysis subjects’ matter are the important tools of the book topic, because numerical errors and methods have important roles in solving integral equations. Therefore, all needed topics including a brief description of interpolation are explained in the book. The integral equations have many applications in the engineering, medical, and economic sciences, so the present book contains new and useful materials about interval computations including interval interpolations that are going to be used in interval integral equations. The concepts of integral equations are going to be discussed in two directions, analytical concepts, and numerical solutions which both are necessary for these kinds of dynamic systems. The differences between this book with the others are a full discussion of error topics and also using interval interpolations concepts to obtain interval integral equations. All researchers and students in the field of mathematical, computer, and also engineering sciences can benefit the subjects of the book.
Author | : M. A. Goldberg |
Publisher | : Springer Science & Business Media |
Total Pages | : 351 |
Release | : 2013-11-21 |
Genre | : Science |
ISBN | : 1475714661 |
Author | : Uri M. Ascher |
Publisher | : SIAM |
Total Pages | : 574 |
Release | : 2011-07-14 |
Genre | : Mathematics |
ISBN | : 0898719976 |
Offers students a practical knowledge of modern techniques in scientific computing.
Author | : David Colton |
Publisher | : SIAM |
Total Pages | : 286 |
Release | : 2013-11-15 |
Genre | : Mathematics |
ISBN | : 1611973155 |
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.