A Course in Model Theory

A Course in Model Theory
Author: Katrin Tent
Publisher: Cambridge University Press
Total Pages: 259
Release: 2012-03-08
Genre: Mathematics
ISBN: 052176324X

Concise introduction to current topics in model theory, including simple and stable theories.

Uncountably Categorical Theories

Uncountably Categorical Theories
Author: Boris Zilber
Publisher: American Mathematical Soc.
Total Pages: 132
Release:
Genre: Mathematics
ISBN: 9780821897454

The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.

A Guide to NIP Theories

A Guide to NIP Theories
Author: Pierre Simon
Publisher: Cambridge University Press
Total Pages: 165
Release: 2015-07-16
Genre: Mathematics
ISBN: 1107057752

The first book to introduce the rapidly developing subject of NIP theories, for students and researchers in model theory.

A Course in Model Theory: Simple Theories

A Course in Model Theory: Simple Theories
Author: Katrin Tent
Publisher:
Total Pages: 248
Release: 2012
Genre: Model theory
ISBN: 9781107224759

This concise introduction to model theory begins with standard notions and takes the reader through to more advanced topics such as stability, simplicity and Hrushovski constructions. The authors introduce the classic results, as well as more recent developments in this vibrant area of mathematical logic. Concrete mathematical examples are included throughout to make the concepts easier to follow. The book also contains over 200 exercises, many with solutions, making the book a useful resource for graduate students as well as researchers.

A Course on Basic Model Theory

A Course on Basic Model Theory
Author: Haimanti Sarbadhikari
Publisher: Springer
Total Pages: 298
Release: 2017-09-05
Genre: Mathematics
ISBN: 9811050988

This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.

Simple Theories and Hyperimaginaries

Simple Theories and Hyperimaginaries
Author: Enrique Casanovas
Publisher: Cambridge University Press
Total Pages: 185
Release: 2011-06-30
Genre: Mathematics
ISBN: 0521119553

In the 1990s Kim and Pillay generalized stability, a major model theoretic idea developed by Shelah twenty-five years earlier, to the study of simple theories. This book is an up-to-date introduction to simple theories and hyperimaginaries, with special attention to Lascar strong types and elimination of hyperimaginary problems. Assuming only knowledge of general model theory, the foundations of forking, stability, and simplicity are presented in full detail. The treatment of the topics is as general as possible, working with stable formulas and types and assuming stability or simplicity of the theory only when necessary. The author offers an introduction to independence relations as well as a full account of canonical bases of types in stable and simple theories. In the last chapters the notions of internality and analyzability are discussed and used to provide a self-contained proof of elimination of hyperimaginaries in supersimple theories.

A Shorter Model Theory

A Shorter Model Theory
Author: Wilfrid Hodges
Publisher: Cambridge University Press
Total Pages: 322
Release: 1997-04-10
Genre: Mathematics
ISBN: 9780521587136

This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Basic Category Theory

Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
Total Pages: 193
Release: 2014-07-24
Genre: Mathematics
ISBN: 1107044243

A short introduction ideal for students learning category theory for the first time.

A Course in Model Theory

A Course in Model Theory
Author: Bruno Poizat
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2012-12-06
Genre: Mathematics
ISBN: 1441986227

Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.

Model Theory : An Introduction

Model Theory : An Introduction
Author: David Marker
Publisher: Springer Science & Business Media
Total Pages: 342
Release: 2006-04-06
Genre: Mathematics
ISBN: 0387227342

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures