A Course In Complex Analysis In One Variable
Download A Course In Complex Analysis In One Variable full books in PDF, epub, and Kindle. Read online free A Course In Complex Analysis In One Variable ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : NARASIMHAN |
Publisher | : Springer Science & Business Media |
Total Pages | : 282 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1475711069 |
This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.
Author | : Martin Moskowitz |
Publisher | : World Scientific Publishing Company |
Total Pages | : 160 |
Release | : 2002-04-17 |
Genre | : Mathematics |
ISBN | : 9813105895 |
Complex analysis is a beautiful subject — perhaps the single most beautiful; and striking; in mathematics. It presents completely unforeseen results that are of a dramatic; even magical; nature. This invaluable book will convey to the student its excitement and extraordinary character. The exposition is organized in an especially efficient manner; presenting basic complex analysis in around 130 pages; with about 50 exercises. The material constantly relates to and contrasts with that of its sister subject; real analysis. An unusual feature of this book is a short final chapter containing applications of complex analysis to Lie theory.Since much of the content originated in a one-semester course given at the CUNY Graduate Center; the text will be very suitable for first year graduate students in mathematics who want to learn the basics of this important subject. For advanced undergraduates; there is enough material for a year-long course or; by concentrating on the first three chapters; for one-semester course.
Author | : Martin A. Moskowitz |
Publisher | : World Scientific |
Total Pages | : 168 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9789810247805 |
Organized in an especially efficient manner, presenting basic complex analysis. Includes about 50 exercises
Author | : Wilhelm Schlag |
Publisher | : American Mathematical Society |
Total Pages | : 402 |
Release | : 2014-08-06 |
Genre | : Mathematics |
ISBN | : 0821898477 |
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Author | : Raghavan Narasimhan |
Publisher | : University of Chicago Press |
Total Pages | : 185 |
Release | : 1971 |
Genre | : Mathematics |
ISBN | : 0226568172 |
Drawn from lectures given by Raghavan Narasimhan at the University of Geneva and the University of Chicago, this book presents the part of the theory of several complex variables pertaining to unramified domains over C . Topics discussed are Hartogs' theory, domains in holomorphy, and automorphism of bounded domains.
Author | : J.B. Conway |
Publisher | : Springer Science & Business Media |
Total Pages | : 323 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461599725 |
This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.
Author | : Henri Cartan |
Publisher | : Courier Corporation |
Total Pages | : 242 |
Release | : 2013-04-22 |
Genre | : Mathematics |
ISBN | : 0486318672 |
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Author | : John W. Dettman |
Publisher | : Courier Corporation |
Total Pages | : 514 |
Release | : 2012-05-07 |
Genre | : Mathematics |
ISBN | : 0486158284 |
Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.
Author | : Robert Everist Greene |
Publisher | : American Mathematical Soc. |
Total Pages | : 536 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9780821839621 |
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Author | : Jiri Lebl |
Publisher | : Lulu.com |
Total Pages | : 142 |
Release | : 2016-05-05 |
Genre | : Science |
ISBN | : 1365095576 |
This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.