A Concise Introduction To Hypercomplex Fractals
Download A Concise Introduction To Hypercomplex Fractals full books in PDF, epub, and Kindle. Read online free A Concise Introduction To Hypercomplex Fractals ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Andrzej Katunin |
Publisher | : CRC Press |
Total Pages | : 104 |
Release | : 2017-10-05 |
Genre | : Computers |
ISBN | : 1351801201 |
This book presents concisely the full story on complex and hypercomplex fractals, starting from the very first steps in complex dynamics and resulting complex fractal sets, through the generalizations of Julia and Mandelbrot sets on a complex plane and the Holy Grail of the fractal geometry – a 3D Mandelbrot set, and ending with hypercomplex, multicomplex and multihypercomplex fractal sets which are still under consideration of scientists. I tried to write this book in a possibly simple way in order to make it understandable to most people whose math knowledge covers the fundamentals of complex numbers only. Moreover, the book is full of illustrations of generated fractals and stories concerned with great mathematicians, number spaces and related fractals. In the most cases only information required for proper understanding of a nature of a given vector space or a construction of a given fractal set is provided, nevertheless a more advanced reader may treat this book as a fundamental compendium on hypercomplex fractals with references to purely scientific issues like dynamics and stability of hypercomplex systems.
Author | : Andrzej Katunin |
Publisher | : CRC Press |
Total Pages | : 103 |
Release | : 2017-10-05 |
Genre | : Computers |
ISBN | : 135180121X |
This book presents concisely the full story on complex and hypercomplex fractals, starting from the very first steps in complex dynamics and resulting complex fractal sets, through the generalizations of Julia and Mandelbrot sets on a complex plane and the Holy Grail of the fractal geometry – a 3D Mandelbrot set, and ending with hypercomplex, multicomplex and multihypercomplex fractal sets which are still under consideration of scientists. I tried to write this book in a possibly simple way in order to make it understandable to most people whose math knowledge covers the fundamentals of complex numbers only. Moreover, the book is full of illustrations of generated fractals and stories concerned with great mathematicians, number spaces and related fractals. In the most cases only information required for proper understanding of a nature of a given vector space or a construction of a given fractal set is provided, nevertheless a more advanced reader may treat this book as a fundamental compendium on hypercomplex fractals with references to purely scientific issues like dynamics and stability of hypercomplex systems.
Author | : Yumei Dang |
Publisher | : World Scientific |
Total Pages | : 163 |
Release | : 2002-08-06 |
Genre | : Computers |
ISBN | : 9814496804 |
This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics.
Author | : Stephen Lynch |
Publisher | : Birkhäuser |
Total Pages | : 590 |
Release | : 2017-10-12 |
Genre | : Mathematics |
ISBN | : 3319614851 |
This book provides an introduction to the theory of dynamical systems with the aid of the Mathematica® computer algebra package. The book has a very hands-on approach and takes the reader from basic theory to recently published research material. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. Theorems and proofs are kept to a minimum. The first section deals with continuous systems using ordinary differential equations, while the second part is devoted to the study of discrete dynamical systems.
Author | : Stephen Lynch |
Publisher | : Springer |
Total Pages | : 668 |
Release | : 2018-10-09 |
Genre | : Mathematics |
ISBN | : 3319781456 |
This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python’s extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams. After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students’ programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential.
Author | : Yumei Dang |
Publisher | : World Scientific |
Total Pages | : 163 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9810232969 |
Includes an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry.
Author | : Heinz-Otto Peitgen |
Publisher | : Springer Science & Business Media |
Total Pages | : 1013 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475747403 |
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Author | : G. Buzsáki |
Publisher | : Oxford University Press |
Total Pages | : 465 |
Release | : 2011 |
Genre | : Medical |
ISBN | : 0199828237 |
Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.
Author | : Rafal Ablamowicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 328 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461581575 |
This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.
Author | : Matti Pitkanen |
Publisher | : Bentham Science Publishers |
Total Pages | : 1235 |
Release | : 2016-03-03 |
Genre | : Science |
ISBN | : 1681081792 |
Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology.