Applied Economic Forecasting Using Time Series Methods

Applied Economic Forecasting Using Time Series Methods
Author: Eric Ghysels
Publisher: Oxford University Press
Total Pages: 617
Release: 2018
Genre: Business & Economics
ISBN: 0190622016

Economic forecasting is a key ingredient of decision making in the public and private sectors. This book provides the necessary tools to solve real-world forecasting problems using time-series methods. It targets undergraduate and graduate students as well as researchers in public and private institutions interested in applied economic forecasting.

Forecasting: principles and practice

Forecasting: principles and practice
Author: Rob J Hyndman
Publisher: OTexts
Total Pages: 380
Release: 2018-05-08
Genre: Business & Economics
ISBN: 0987507117

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Forecasting Economic Time Series

Forecasting Economic Time Series
Author: Michael Clements
Publisher: Cambridge University Press
Total Pages: 402
Release: 1998-10-08
Genre: Business & Economics
ISBN: 9780521634809

This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.

Principles of Forecasting

Principles of Forecasting
Author: J.S. Armstrong
Publisher: Springer Science & Business Media
Total Pages: 880
Release: 2001
Genre: Business & Economics
ISBN: 9780792374015

This handbook summarises knowledge from experts and empirical studies. It provides guidelines that can be applied in fields such as economics, sociology, and psychology. Includes a comprehensive forecasting dictionary.

A Companion to Economic Forecasting

A Companion to Economic Forecasting
Author: Michael P. Clements
Publisher: John Wiley & Sons
Total Pages: 616
Release: 2008-04-15
Genre: Social Science
ISBN: 140517191X

A Companion to Economic Forecasting provides an accessible and comprehensive account of recent developments in economic forecasting. Each of the chapters has been specially written by an expert in the field, bringing together in a single volume a range of contrasting approaches and views. Uniquely surveying forecasting in a single volume, the Companion provides a comprehensive account of the leading approaches and modeling strategies that are routinely employed.

Asymptotics, Nonparametrics, and Time Series

Asymptotics, Nonparametrics, and Time Series
Author: Subir Ghosh
Publisher: CRC Press
Total Pages: 864
Release: 1999-02-18
Genre: Mathematics
ISBN: 9780824700515

"Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."

Business Cycles, Indicators, and Forecasting

Business Cycles, Indicators, and Forecasting
Author: James H. Stock
Publisher: University of Chicago Press
Total Pages: 350
Release: 2008-04-15
Genre: Business & Economics
ISBN: 0226774740

The inability of forecasters to predict accurately the 1990-1991 recession emphasizes the need for better ways for charting the course of the economy. In this volume, leading economists examine forecasting techniques developed over the past ten years, compare their performance to traditional econometric models, and discuss new methods for forecasting and time series analysis.

Economic Forecasting

Economic Forecasting
Author: Graham Elliott
Publisher: Princeton University Press
Total Pages: 567
Release: 2016-04-05
Genre: Business & Economics
ISBN: 1400880890

A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike

Macroeconomic Forecasting in the Era of Big Data

Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
Total Pages: 716
Release: 2019-11-28
Genre: Business & Economics
ISBN: 3030311503

This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.

Elements of Forecasting

Elements of Forecasting
Author: Francis X. Diebold
Publisher: South-Western Pub
Total Pages: 366
Release: 2007
Genre: Business & Economics
ISBN: 9780324359046

ELEMENTARY FORECASTING focuses on the core techniques of widest applicability. The author illustrates all methods with detailed real-world applications, many of them international in flavor, designed to mimic typical forecasting situations.