A Combinatorial Theory of Possibility

A Combinatorial Theory of Possibility
Author: D. M. Armstrong
Publisher: Cambridge University Press
Total Pages: 174
Release: 1989-09-29
Genre: Philosophy
ISBN: 9780521377805

Preface Part I. Non-Naturalist Theories of Possibility: 1. Causal argument 2. Non-Naturalist theories of possibility Part II. A Combinatorial and Naturalist Account of Possibility: 3. Possibility in a simple world 4. Expanding and contracting the world 5. Relative atoms 6. Are there de re incompatibilities and necessities? 7. Higher-order entities, negation and causation 8. Supervenience 9. Mathematics 10. Final questions: logic Works cited Appendix: Tractarian Nominalism Brian Skyrms Index.

A Survey of Combinatorial Theory

A Survey of Combinatorial Theory
Author: Jagdish N. Srivastava
Publisher: Elsevier
Total Pages: 476
Release: 2014-05-12
Genre: Biography & Autobiography
ISBN: 1483278174

A Survey of Combinatorial Theory covers the papers presented at the International Symposium on Combinatorial Mathematics and its Applications, held at Colorado State University (CSU), Fort Collins, Colorado on September 9-11, 1971. The book focuses on the principles, operations, and approaches involved in combinatorial theory, including the Bose-Nelson sorting problem, Golay code, and Galois geometries. The selection first ponders on classical and modern topics in finite geometrical structures; balanced hypergraphs and applications to graph theory; and strongly regular graph derived from the perfect ternary Golay code. Discussions focus on perfect ternary Golay code, finite projective and affine planes, Galois geometries, and other geometric structures. The book then examines the characterization problems of combinatorial graph theory, line-minimal graphs with cyclic group, circle geometry in higher dimensions, and Cayley diagrams and regular complex polygons. The text discusses combinatorial problems in finite Abelian groups, dissection graphs of planar point sets, combinatorial problems and results in fractional replication, Bose-Nelson sorting problem, and some combinatorial aspects of coding theory. The text also reviews the enumerative theory of planar maps, balanced arrays and orthogonal arrays, existence of resolvable block designs, and combinatorial problems in communication networks. The selection is a valuable source of information for mathematicians and researchers interested in the combinatorial theory.

Combinatorics: The Art of Counting

Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
Total Pages: 304
Release: 2020-10-16
Genre: Education
ISBN: 1470460327

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.

Analytic Combinatorics

Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
Total Pages: 825
Release: 2009-01-15
Genre: Mathematics
ISBN: 1139477161

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

Lectures on the Combinatorics of Free Probability

Lectures on the Combinatorics of Free Probability
Author: Alexandru Nica
Publisher: Cambridge University Press
Total Pages: 430
Release: 2006-09-07
Genre: Mathematics
ISBN: 0521858526

This 2006 book is a self-contained introduction to free probability theory suitable for an introductory graduate level course.

Probability

Probability
Author: Rick Durrett
Publisher: Cambridge University Press
Total Pages:
Release: 2010-08-30
Genre: Mathematics
ISBN: 113949113X

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

The Probabilistic Method

The Probabilistic Method
Author: Noga Alon
Publisher: John Wiley & Sons
Total Pages: 396
Release: 2015-11-02
Genre: Mathematics
ISBN: 1119062071

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

Introduction to Probability

Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
Total Pages: 447
Release: 2017-11-02
Genre: Mathematics
ISBN: 110824498X

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

102 Combinatorial Problems

102 Combinatorial Problems
Author: Titu Andreescu
Publisher: Springer Science & Business Media
Total Pages: 125
Release: 2013-11-27
Genre: Mathematics
ISBN: 0817682228

"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.

The Theory of Probability

The Theory of Probability
Author: Santosh S. Venkatesh
Publisher: Cambridge University Press
Total Pages: 830
Release: 2013
Genre: Mathematics
ISBN: 1107024471

From classical foundations to modern theory, this comprehensive guide to probability interweaves mathematical proofs, historical context and detailed illustrative applications.