A Combinatorial Perspective On Quantum Field Theory
Download A Combinatorial Perspective On Quantum Field Theory full books in PDF, epub, and Kindle. Read online free A Combinatorial Perspective On Quantum Field Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Karen Yeats |
Publisher | : Springer |
Total Pages | : 120 |
Release | : 2016-11-23 |
Genre | : Science |
ISBN | : 3319475517 |
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author’s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
Author | : Robin Ticciati |
Publisher | : Cambridge University Press |
Total Pages | : 720 |
Release | : 1999-06-13 |
Genre | : Mathematics |
ISBN | : 052163265X |
This should be a useful reference for anybody with an interest in quantum theory.
Author | : Alexander Altland |
Publisher | : Cambridge University Press |
Total Pages | : 785 |
Release | : 2010-03-11 |
Genre | : Science |
ISBN | : 0521769752 |
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Author | : Daniel S. Freed |
Publisher | : American Mathematical Soc. |
Total Pages | : 202 |
Release | : 2019-08-23 |
Genre | : Mathematics |
ISBN | : 1470452065 |
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Author | : Kurusch Ebrahimi-Fard |
Publisher | : American Mathematical Soc. |
Total Pages | : 480 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 0821853295 |
This book is based on the mini-workshop Renormalization, held in December 2006, and the conference Combinatorics and Physics, held in March 2007. Both meetings took place at the Max-Planck-Institut fur Mathematik in Bonn, Germany. Research papers in the volume provide an overview of applications of combinatorics to various problems, such as applications to Hopf algebras, techniques to renormalization problems in quantum field theory, as well as combinatorial problems appearing in the context of the numerical integration of dynamical systems, in noncommutative geometry and in quantum gravity. In addition, it contains several introductory notes on renormalization Hopf algebras, Wilsonian renormalization and motives.
Author | : Brian C. Hall |
Publisher | : Springer Science & Business Media |
Total Pages | : 566 |
Release | : 2013-06-19 |
Genre | : Science |
ISBN | : 1461471168 |
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Author | : Paul-Hermann Balduf |
Publisher | : Springer Nature |
Total Pages | : 373 |
Release | : |
Genre | : |
ISBN | : 3031544463 |
Author | : Kevin Costello |
Publisher | : Cambridge University Press |
Total Pages | : 399 |
Release | : 2017 |
Genre | : Mathematics |
ISBN | : 1107163102 |
This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.
Author | : V.A. Malyshev |
Publisher | : Springer Science & Business Media |
Total Pages | : 352 |
Release | : 2002-08-31 |
Genre | : Science |
ISBN | : 9781402007927 |
New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.
Author | : John Gough |
Publisher | : Cambridge University Press |
Total Pages | : 341 |
Release | : 2018-04-12 |
Genre | : Mathematics |
ISBN | : 1108416764 |
Do quantum field theory without Feynman diagrams! Use the combinatorics behind cumulants, correlations, Green's functions and quantum fields.