A Class Of Orthogonal Polynomials In Two Variables
Download A Class Of Orthogonal Polynomials In Two Variables full books in PDF, epub, and Kindle. Read online free A Class Of Orthogonal Polynomials In Two Variables ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mourad Ismail |
Publisher | : Cambridge University Press |
Total Pages | : 748 |
Release | : 2005-11-21 |
Genre | : Mathematics |
ISBN | : 9780521782012 |
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
Author | : P.K. Suetin |
Publisher | : Routledge |
Total Pages | : 369 |
Release | : 2022-03-31 |
Genre | : Mathematics |
ISBN | : 1351426389 |
Presenting a comprehensive theory of orthogonal polynomials in two real variables and properties of Fourier series in these polynomials, this volume also gives cases of orthogonality over a region and on a contour. The text includes the classification of differential equations which admits orthogonal polynomials as eigenfunctions and several two-dimensional analogies of classical orthogonal polynomials.
Author | : Charles F. Dunkl |
Publisher | : Cambridge University Press |
Total Pages | : 439 |
Release | : 2014-08-21 |
Genre | : Mathematics |
ISBN | : 1107071895 |
Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.
Author | : Gabor Szeg |
Publisher | : American Mathematical Soc. |
Total Pages | : 448 |
Release | : 1939-12-31 |
Genre | : Mathematics |
ISBN | : 0821810235 |
The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.
Author | : Themistocles M. Rassias |
Publisher | : World Scientific |
Total Pages | : 658 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : 9789810206147 |
This volume presents an account of some of the most important work that has been done on various research problems in the theory of polynomials of one and several variables and their applications. It is dedicated to P L Chebyshev, a leading Russian mathematician.
Author | : Mama Foupouagnigni |
Publisher | : Springer Nature |
Total Pages | : 683 |
Release | : 2020-03-11 |
Genre | : Mathematics |
ISBN | : 3030367444 |
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Author | : Charles F. Dunkl |
Publisher | : Cambridge University Press |
Total Pages | : 439 |
Release | : 2014-08-21 |
Genre | : Mathematics |
ISBN | : 1316061906 |
Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.
Author | : M Zuhair Nashed |
Publisher | : World Scientific |
Total Pages | : 577 |
Release | : 2018-01-12 |
Genre | : Mathematics |
ISBN | : 981322889X |
This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.
Author | : A. L. Levin |
Publisher | : Springer Science & Business Media |
Total Pages | : 492 |
Release | : 2001-06-29 |
Genre | : Mathematics |
ISBN | : 9780387989419 |
The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0 ; likewise, the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov-Bernstein and Nikolskii inequalities. The book will be of interest to researchers in approximation theory, harmonic analysis, numerical analysis, potential theory, and all those that apply orthogonal polynomials.
Author | : Roelof Koekoek |
Publisher | : Springer Science & Business Media |
Total Pages | : 584 |
Release | : 2010-03-18 |
Genre | : Mathematics |
ISBN | : 364205014X |
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).