Remote Sensing Handbook, Volume I

Remote Sensing Handbook, Volume I
Author: Prasad S. Thenkabail
Publisher: CRC Press
Total Pages: 626
Release: 2024-11-29
Genre: Technology & Engineering
ISBN: 1040203582

Volume I of the Six Volume Remote Sensing Handbook, Second Edition, is focused on satellites and sensors including radar, light detection and ranging (LiDAR), microwave, hyperspectral, unmanned aerial vehicles (UAVs), and their applications. It discusses data normalization and harmonization, accuracies, and uncertainties of remote sensing products, global navigation satellite system (GNSS) theory and practice, crowdsourcing, cloud computing environments, Google Earth Engine, and remote sensing and space law. This thoroughly revised and updated volume draws on the expertise of a diverse array of leading international authorities in remote sensing and provides an essential resource for researchers at all levels interested in using remote sensing. It integrates discussions of remote sensing principles, data, methods, development, applications, and scientific and social context. FEATURES Provides the most up-to-date comprehensive coverage of remote sensing science. Discusses and analyzes data from old and new generations of satellites and sensors. Provides comprehensive methods and approaches for remote sensing data normalization, standardization, and harmonization. Includes numerous case studies on advances and applications at local, regional, and global scales. Introduces advanced methods in remote sensing such as machine learning, cloud computing, and AI. Highlights scientific achievements over the last decade and provides guidance for future developments. This volume is an excellent resource for the entire remote sensing and GIS community. Academics, researchers, undergraduate and graduate students, as well as practitioners, decision-makers, and policymakers, will benefit from the expertise of the professionals featured in this book, and their extensive knowledge of new and emerging trends.

Emerging Trends, Techniques, and Applications in Geospatial Data Science

Emerging Trends, Techniques, and Applications in Geospatial Data Science
Author: Gaur, Loveleen
Publisher: IGI Global
Total Pages: 324
Release: 2023-04-24
Genre: Technology & Engineering
ISBN: 1668473216

With the emergence of smart technology and automated systems in today’s world, big data is being incorporated into many applications. Trends in data can be detected and objects can be tracked based on the real-time data that is utilized in everyday life. These connected sensor devices and objects will provide a large amount of data that is to be analyzed quickly, as it can accelerate the transformation of smart technology. The accuracy of prediction of artificial intelligence (AI) systems is drastically increasing by using machine learning and other probability and statistical approaches. Big data and geospatial data help to solve complex issues and play a vital role in future applications. Emerging Trends, Techniques, and Applications in Geospatial Data Science provides an overview of the basic concepts of data science, related tools and technologies, and algorithms for managing the relevant challenges in real-time application domains. The book covers a detailed description for readers with practical ideas using AI, the internet of things (IoT), and machine learning to deal with the analysis, modeling, and predictions from big data. Covering topics such as field spectra, high-resolution sensing imagery, and spatiotemporal data engineering, this premier reference source is an excellent resource for data scientists, computer and IT professionals, managers, mathematicians and statisticians, health professionals, technology developers, students and educators of higher education, librarians, researchers, and academicians.

Advances in Machine Learning and Image Analysis for GeoAI

Advances in Machine Learning and Image Analysis for GeoAI
Author: Saurabh Prasad
Publisher: Elsevier
Total Pages: 366
Release: 2024-04-26
Genre: Science
ISBN: 044319078X

Advances in Machine Learning and Image Analysis for GeoAI provides state-of-the-art machine learning and signal processing techniques for a comprehensive collection of geospatial sensors and sensing platforms. The book covers supervised, semi-supervised and unsupervised geospatial image analysis, sensor fusion across modalities, image super-resolution, transfer learning across sensors and time-points, and spectral unmixing among other topics. The chapters in these thematic areas cover a variety of algorithmic frameworks such as variants of convolutional neural networks, graph convolutional networks, multi-stream networks, Bayesian networks, generative adversarial networks, transformers and more.Advances in Machine Learning and Image Analysis for GeoAI provides graduate students, researchers and practitioners in the area of signal processing and geospatial image analysis with the latest techniques to implement deep learning strategies in their research. - Covers the latest machine learning and signal processing techniques that can effectively leverage multimodal geospatial imagery at scale - Chapters cover a variety of algorithmic frameworks pertaining to GeoAI, including superresolution, self-supervised learning, data fusion, explainable AI, among others - Presents cutting-edge deep learning architectures optimized for a wide array of geospatial imagery

Remote Sensing of Precipitation

Remote Sensing of Precipitation
Author: Silas Michaelides
Publisher: MDPI
Total Pages: 480
Release: 2019-07-23
Genre: Science
ISBN: 3039212850

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Advances in Data Computing, Communication and Security

Advances in Data Computing, Communication and Security
Author: Pankaj Verma
Publisher: Springer Nature
Total Pages: 703
Release: 2022-03-28
Genre: Technology & Engineering
ISBN: 9811684030

This book is a collection of high-quality peer reviewed contributions from the academicians, researchers, practitioners, and industry professionals, accepted in the International Conference on Advances in Data Computing, Communication and Security (I3CS2021) organized by the Department of Electronics and Communication Engineering in collaboration with the Department of Computer Engineering, National Institute of Technology, Kurukshetra, India during 08-10 Sep 2021. The fast pace of advancing technologies and growing expectations of the next-generation requires that the researchers must continuously reinvent themselves through new investigations and development of the new products. The theme of this conference is devised as "Embracing Innovations" for the next-generation data computing and secure communication system.

Smart Technologies, Systems and Applications

Smart Technologies, Systems and Applications
Author: Fabián R. Narváez
Publisher: Springer Nature
Total Pages: 437
Release: 2022-03-30
Genre: Computers
ISBN: 3030991709

This book constitutes refereed proceedings of the Second International Conference on Smart Technologies, Systems and Applications, held in Quito, Ecuador, in December 2021. Due to the COVID-19 pandemic the conference was held in a hybrid format. The 29 full papers along with 1 short paper presented were carefully reviewed and selected from 104 submissions. The papers of this volume are organized in topical sections on smart technologies; smart systems; smart trends and applications.

Spatial Modeling in Forest Resources Management

Spatial Modeling in Forest Resources Management
Author: Pravat Kumar Shit
Publisher: Springer Nature
Total Pages: 675
Release: 2020-10-08
Genre: Science
ISBN: 3030565424

This book demonstrates the measurement, monitoring, mapping, and modeling of forest resources. It explores state-of-the-art techniques based on open-source software & R statistical programming and modeling specifically, with a focus on the recent trends in data mining/machine learning techniques and robust modeling in forest resources. Discusses major topics such as forest health assessment, estimating forest biomass & carbon stock, land use forest cover (LUFC), dynamic vegetation modeling (DVM) approaches, forest-based rural livelihood, habitat suitability analysis, biodiversity and ecology, and biodiversity, the book presents novel advances and applications of RS-GIS and R in a precise and clear manner. By offering insights into various concepts and their importance for real-world applications, it equips researchers, professionals, and policy-makers with the knowledge and skills to tackle a wide range of issues related to geographic data, including those with scientific, societal, and environmental implications.

Reshaping Environmental Science Through Machine Learning and IoT

Reshaping Environmental Science Through Machine Learning and IoT
Author: Gupta, Rajeev Kumar
Publisher: IGI Global
Total Pages: 459
Release: 2024-05-06
Genre: Technology & Engineering
ISBN:

In the face of escalating environmental challenges such as climate change, air and water pollution, and natural disasters, traditional approaches to understanding and addressing these issues have yet to be proven sufficient. Academic scholars are compelled to seek innovative solutions that marry digital intelligence and natural ecosystems. Reshaping Environmental Science Through Machine Learning and IoT serves as a comprehensive exploration into the transformative potential of Machine Learning (ML) and the Internet of Things (IoT) to address critical environmental challenges. The book establishes a robust foundation in ML and IoT, explaining their relevance to environmental science. As the narrative unfolds, it delves into diverse applications, providing theoretical insights alongside practical knowledge. From interpreting weather patterns to predicting air and water quality, the book navigates through the intricate web of environmental complexities. Notably, it unveils approaches to disaster management, waste sorting, and climate change monitoring, showcasing the symbiotic relationship between digital intelligence and natural ecosystems. This book is ideal for audiences from students and researchers to data scientists and disaster management professionals with a nuanced understanding of IoT, ML, and Artificial Intelligence (AI).

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Author: Yakoub Bazi
Publisher: MDPI
Total Pages: 438
Release: 2021-06-15
Genre: Science
ISBN: 3036509860

The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.